미디어위원회
2017-11-07

빙하기 탐구 - 멈춰버린 시간. 3장 

: 빙하기의 미스터리 

(Frozen in Time, Chapter 3. The Mystery of the Ice Age)

by Michael J. Oard, Ph.D.


       대부분의 과학자들은 털북숭이 매머드(woolly mammoths)가 빙하기(ice ages)에 살았고, 빙하기 말에 멸종했다고 믿고 있다. 매머드들에게 일어났던 일을 이해하기 위해서는, 빙하기를 더 잘 이해해야 한다. 빙하기가 있었다는 것은 분명하지만, 과학자들이 그 원인을 제시하고자할 때는 막다른 벽에 부딪힌다. 그들은 연이은 미스터리에 빠져든다.

 

정말로 빙하기가 있었는가?

오늘날의 세계를 보면 한때 빙하기가 있었다고 상상하기 어렵다. 얼음이 한때 지구 표면의 30%를 덮었다는 것은 상상할 수 없는 것 같다. 빙하기가 있었다는 것을 어떻게 알 수 있는가?

빙하기에 대한 많은 증거들은 현대 빙하 연구들에서 비롯된 것이다. 빙하는 오늘날 빙퇴석(moraines)이라 불리는 암설(debris) 더미를 남겨놓았다. 암설은 모래, 이토, 또는 심지어 점토 모암(matrix) 내에서 다양한 크기의 무작위로 분류된 암석으로 구성된다. 이 암설은 빙력토(till)라고 한다. 빙퇴석에는 일반적으로 세 가지 종류가 있다: 1)종퇴석(terminal or end moraine, 말단 빙퇴석)은 앞으로 이동할 때, 빙하의 앞으로 밀려나온 빙력토 더미이다. 2)측퇴석(lateral moraine)은 빙하가 이동할 때, 빙하의 측면으로 밀려난 암설이 만들어놓은 것이다. 3)저퇴석(ground moraine)은 빙하 아래에 생긴 것이다. 저퇴석은 일반적으로 거친 언덕 모양이다.

빙퇴석 내에서는 흔히 긁힌 암석이나 줄무늬 암석이 발견된다. 긁힌 자국과 홈은 암석과 암석이 마찰되거나, 빙하가 아래의 기반암을 긁을 때 암석에 새겨진다. 긁힌 자국은 빙하의 이동 방향을 나타낸다.

북아메리카의 평원과 미국 서부의 산 계곡뿐만 아니라, 유럽의 일부 지역에서 이러한 동일한 특성들이 발견되는데, 이것은 이들 지역이 한때 빙하로 덮였었다는 것을 가리킨다. 분명히 빙하기는 있었다. 그림 3.5는 세계에서 가장 독특한 측퇴석 및 종퇴석 중 하나를 보여준다. 그것은 해발 1,300m에 위치한 오레곤 북동부의 왈로와 산맥(Wallowa Mountains) 북쪽에 있다. 빙하기 동안에 빙하가 왈로와 산맥 북쪽에서 계곡 아래쪽 밖으로 약 3km 되는 오레곤 주 엔터프라이스 근처의 작은 평원으로 내려왔다. 종퇴석은 다소 작아서, 높이가 약 30m에 불과하다. 양쪽에 날카로운 정상부가 있는 측면 빙퇴석은 산 전면 근처에 약 210m 높이로 있다. 그 두 개의 빙퇴석은 말굽 모양을 형성하며, 이제는 아름다운 왈로와 호수(Wallowa Lake)가 그곳을 차지하고 있다. 그 호수는 피요르드( fjord)와 비슷하게 생긴 깊게 패인 계곡을 뒤덮고 있다. 피요르드란 해안을 따라 펼쳐진 바다의 길고 좁은 지류이다. 그것은 한때 빙하에 의해 깊게 파여진 해안의 계곡이었다. 왈로와 호수 주변의 종퇴석과 측퇴석은 가는 입자의 모암 내부에 여러 크기의 암석들이 혼합된 빙력토(till)로 이루어져 있다.


최근까지 빙하가 있었던 중위도, 고위도, 열대 지방의 산들

빙하작용(glaciation)에 대한 많은 흔적들을 관찰함으로써, 빙상(ice sheet)이 형성됐던 곳을 추정할 수 있다. 북미 대륙에는 두 개의 커다란 빙상이 뒤덮고 있었다. 하나는 코딜레란 빙상(Cordilleran Ice Sheet)이라는 것으로, 캐나다 서부 산악지역과 미국 북서부 지역을 차지하고 있었다. 다른 하나는 로렌타이드 빙상(Laurentide ice sheet)이라는 것으로, 캐나다의 나머지 지역과 미국 북부지역에 형성되어 있었다(그림 3.8을 보라). 북부 캐나다가 얼마나 많이 빙하로 덮였었는지는 여전히 불분명하다. 빙하기 초에 두 개의 빙상을 나누었던, 얼음 없는 지역이 로키산맥의 동쪽 경사면을 따라 놓여 있다.

그림 3.8. 북아메리카 지역의 빙상

미국 대륙에서는 빙상의 남쪽 가장자리가 워싱턴 주 북서쪽에서 미국 북부까지 뻗어 있었다. 중서부 지역에서는 그 가장자리가 북위 38°에 있는 미주리 주 세인트루이스만큼 멀리 남쪽까지 도달했던 것으로 여겨진다. 얼음은 아마도 세인트루이스 아래까지는 확장되지 않았을 것이다. 남쪽의 퇴적물은 빙상의 가장자리를 따라 형성된 빙하 호수 및 빙하가 녹으면서 만든 지형(meltwater features)의 잔해일 수 있다. 빙하기의 강과 호수에 의해 퇴적된 퇴적물은 뚜렷한 종퇴석이 없는 지역에서 빙상의 경계를 모호하게 했을 수 있다.

또한 빙하작용이 결코 없었던 두 지역이 있었다. 그곳은 로렌타이드 빙상 둘레의 안쪽에 있다. 이 지역을 표류가 없는(driftless) 지역이라고 한다. 첫 번째 지역은 위스콘신 주 남서부와 인접한 작은 영역인 미네소타 남동부, 아이오와 북동부, 일리노이 북서부를 포함하는 약 40,000 평방킬로미터에 해당된다.[1] 두 번째 지역은 몬타나 북동부와 중앙 서스캐처원(캐나다 남서부의 주) 남부에 위치하고 있으며, 약 15,000 평방킬로미터의 면적을 차지한다.[2]

미국 서부의 많은 산악지역에는 빙관(ice cap, 만년설)이 있었다. 이 지역은 로키산맥의 대부분과, 태평양 북서부의 캐스케이드 산맥, 캘리포니아의 시에라네바다 산맥이 있는 지역이다. 빙관은 오레곤 주 북동부에 있는 왈로와 산맥, 샌프란시스코 산맥, 아리조나 주의 그랜드 캐니언 남부와 같은 많은 작은 산악지역을 덮었었다.

유사한 빙상의 흔적이 북유럽과 북서아시아에서도 발견된다. 이 빙상을 스칸디나비아 빙상이라고 한다. 러시아 북서쪽에 있는 이 빙상과 노르웨이의 북쪽에 있는 얕은 바다의 정확한 경계는 여전히 논쟁이 되고 있다.[3] 미국에서와 마찬가지로 알프스, 코카서스, 피레네 산맥과 같은 유럽의 많은 산들이 빙관으로 덮여있었다.

그림 3.9 유럽과 아시아에 있는 빙상

빙하기는 북반구에서만 발생하지는 않았다. 그것은 남반구 고위도의 산에서도 있었다. 호주의 태즈메니아, 뉴질랜드, 칠레, 아르헨티나 남부의 산들과 심지어 호주 남동부의 작은 산악 지대에도 모두 빙하가 있었다. 남반구에서 빙하기의 얼음 대부분은 남극 대륙에까지 이른다. 남극 대륙뿐만 아니라, 그린란드의 현재 얼음 덩어리는 거대한 빙하기에 대한 증거물로 남아 있다.

열대지방도 예외가 아니었다. 시원했던 기후로 인해, 오늘날 가장 높은 산에 존재하는 빙관은 약 900m 더 낮은 곳까지 내려와 있었다. 킬리만자로, 케냐, 루웬조리 산맥, 사하라 사막의 높은 봉우리 여러 개 등을 포함하는 중앙아프리카 동부의 화산 봉우리들은 빙관으로 덮였었다.[4] 오늘날 빙하가 없는 많은 다른 열대 산맥에도 빙관이 존재했었다. 중위도와 고위도 지역에서와 마찬가지로 이 열대지역의 산악지역에 빙관이 있었다는 것은 빙력토, 빙퇴석, 긁힌 자국 있는 암석, 줄무늬가 있는 기반암 등으로부터 유추되고 있다.

빙하작용의 많은 특징들은 아직도 모양이 날카롭고, 침식이 아주 약간만 되었다는 것인데, 이것은 빙하기가 비교적 최근에 있었음을 가리킨다. 이에 대한 좋은 예는 왈로와 산맥에서 돌출된 편자 모양의 빙퇴석이다(그림 3.5). 크릭메이(Crickmay)[5]는 많은 빙하작용의 모습이 신선하다는 것에 주목했다:

대기의 영향이 비교적 적었다는 것은 홍적세(Pleistocene)에 빙하가 있었던 지역에서 강하게 보여지는데, 15,000~20,000년 동안에는 빙하작용이 없었다. 그 기간 동안에 많은 물의 흐름이 100m 이상의 깊은 계곡을 파내었음에도 불구하고, 대기는 빙하의 줄무늬(glacial striae)를 거의 지우지 못했다.

빙하작용은 15,000년에서 20,000년 전보다도 더 최근에 쉽게 가능했을 것이다. 크릭메이는 단순히 전통적인 지질학적 지식을 되풀이하고 있었다. 빙하 특성의 신선함은 훨씬 더 젊은 연대를 지지한다. 지질학자 조지 프레데릭 라이트(G. Frederick Wright)[6]는 위스콘신 주의 빙하작용은 거의 침식되지 않았으며, 유럽과 북아메리카 빙하 케임(glacial kames, 빙하가 운반해온 모래나 자갈로 된 언덕)도 약간만 침식되었다고 지적했다. 그는 허드슨 만(Hudson Bay)의 동부 해안에 있는 빙하 줄무늬(glacial striations)와 관련하여 다음과 같이 적고 있다:

허드슨의 만의 동해안에 있는 포틀랜드 곶에서, 위도 58o 되는 곳에 남쪽 방향으로, 높은 암석질의 언덕은 완전히 빙하작용이 일어나있고 민둥산이다. 그 줄무늬들은 얼음이 어제 막 만들어놓은 것처럼 신선해 보인다. 비에 젖었던 직후에 이 언덕 위에 태양이 작열하면, 몬트리올 시의 주석 지붕처럼 반짝이고 빛난다.[7]

줄무늬들은 일단 노출되고 난 후에는 비교적 빨리 제거되어야 한다. 15,000~20,000년 풍화를 겪고 나서도 모습이 매우 뚜렷하다는 것은 가능할 것 같아 보이지 않는다.


빙하기를 초래하는 데 얼마나 많은 기후 변화가 필요할까?

빙하기가 시작되기 위해서는 겨울에 내린 눈이 여름과 가을 동안에도 녹지 않고 지속되어서, 매년 축적되어야 한다. 따라서 중위도 및 고위도 대륙 지역에 빙상이나 빙하를 만들려면, 더 추운 여름과 더 많은 눈의 조합이 필요하다. 얼음이 쌓인 대부분의 지역에서 겨울은 이미 눈과 얼음을 유지하기에 충분히 추운 반면에, 여름에는 그것이 녹을 수 있다.

눈이 계속 쌓이는 경우, 두 가지 메커니즘에 의해 얼음으로 변한다. 하나는 여름에 부분적으로 녹은 눈이 아래쪽으로 침투한 다음, 다시 얼어서 얼음으로 되는 것이다. 두 번째 메커니즘은 추운 환경에서 눈이 충분한 깊이(최대 60m)가 된 후에 발생한다. 기본적으로 눈의 무게가 바닥에 있는 눈으로부터 대부분의 공기를 뽑아내면서, 눈을 얼음으로 바꾸는 것이다. 이것은 남극 및 그린란드 빙상 위에서 눈이 얼음으로 되는 방식이다.

더 추운 여름과 더 많은 강설의 조건은 어려운 요구사항이다. 미국에서 가장 추운 지역 중 하나인 미니애폴리스에서 빙상이 발달하기 위해서는 무엇이 필요했을지 생각해보자. 이 지역은 비교적 최근까지 두께가 약 300m에 이르는 빙상으로 덮여있었다.

6월에서 8월까지 미니애폴리스의 평균 기온은 21°C이다. 겨울의 눈이 녹지 않도록 하려면, 봄, 여름 및 가을의 기온은 적어도 빙점 이하로 유지되어야 한다. 이것은 여름 기온이 적어도 3.3°C 이하로 차가워야 함을 의미한다. 그러나 그때 햇빛의 강렬함은 대부분의 눈을 녹게 한다. 즉, 온도는 작은 요인이기는 하지만, 여전히 중요하다. 미니애폴리스는 여름에 햇빛을 많이 받기 때문에, 다음 겨울까지 평균기온은 1인치의 눈이 얼어붙는 것보다 훨씬 더 낮을 필요가 있다. 고위도의 남극 대륙에서는 여름 동안은 태양이 낮게 뜨지만, 24시간 동안 낮이 지속되며, 평균온도가 –10°C일 때 빙상의 가장자리를 따라 눈이 녹는 것이 관찰된다.[8] 미니애폴리스의 태양각(sun angle)은 남극 대륙의 가장자리보다 훨씬 높지만, 밤은 더 길기 때문에, 평균 여름 기온은 미니애폴리스에서의 여름 해빙과 유사할 것이다. 약간의 겨울눈도 사라지지 않는 보수적인 여름 평균 기온은 -6.7°C 이다. 따라서 여름 온도가 오늘날의 평균 온도인 21°C에서 -6.7°C로 떨어지는 것은, 무려 28°C에 달하는 엄청난 변화이다! 물론, 가을과 봄에는 태양으로부터 열을 적게 받고, 계절적으로 온도가 자연히 더 낮기 때문에, 더 적은 온도 강하가 필요하다.

위의 계산은 강설량이 현대 기후에서와 동일하다고 가정한 것이다. 다른 메커니즘에 따라 훨씬 더 많은 눈이 내렸다면, 지상에서 눈이 1인치 이상 유지되는데, 여름 냉각이 그렇게 많이 필요하지는 않았을 것이다.

나중에 증명하겠지만, 건조하고 시원한 빙하기 기후(여름 평균 온도인 10°C)에서 빙상의 가장자리 근처의 얼음이 녹는 양은 일 년에 약 400인치(10m)이다. 얼음 1인치는 평균 10인치의 눈가루에 해당한다. 따라서 이것을 미니애폴리스에 적용하면 연간 4,000인치(100m)의 강설이 내려야 하며, 이는 연 평균 강설량의 약 100배이다. 따라서 상대적으로 시원한 여름 동안에도 엄청난 강설량이 필요하다. 물론, 여름 평균 기온이 약 -1°C인 경우라면, 보통의 강설량의 20배만 내리면 될 것이다.

이 매우 특별한 상황이 수년 동안 지속되어야 할 것이다. 수년 동안 미니애폴리스에서 온도는 4.4C°로 냉각되고, 강설량은 20배가 되게 하는 기후 요인으로는 어떤 것들이 조합 되어야할까? 문제를 더 복잡하게 하는 것은, 많은 냉각을 야기하는 메커니즘이 발견될 수 있다하더라도, 대기 중의 습도(많은 강설에 필요)를 유지하는 능력이 떨어지게 된다는 것이다. 그러면 대기의 냉각은 대기를 더 건조하게 만들 것이므로, 필요한 많은 양의 눈을 생산하기 어려울 것이다. 이것은 모든 빙하기 이론들에 있어서 가장 큰 도전 중 하나이다.


얼음이 캐나다에서 미국까지 내려왔을까?

또 다른 가능성은, 실제로 빙상이 캐나다의 북동부와 서부 고지대와 스칸디나비아 산맥에 걸쳐 시작되었다는 것이다. 이 지역은 오늘날에도 아주 높은 지형에 빙하가 여전히 남아 있다. 캐나다는 미니애폴리스 보다 북극에 더 가깝기 때문에, 여름철 냉각뿐만 아니라, 강설량이 많이 증가하여, 북쪽 멀리까지 빙상이 조성되었을 것이다. 과학자들은 이 북쪽 지역에서 빙상이 생겨났으며, 수천 년에 걸쳐 조금씩 움직여서, 북미대륙에서는 미니애폴리스까지 남쪽으로, 심지어 미주리 주 세인트루이스에까지 이르렀다고 믿고 있다. 이런 식으로 과학자들은 북쪽에서부터 서서히 뻗어나가던 빙상이 세인트루이스까지 다다르는 데 필요한 기후변화를 야기했다고 생각하고 있다.

유럽에서는 얼음이 스칸디나비아 산맥에서 뻗어나가, 잠시 후 저지대로 내려온 것으로 추정된다. 그리고는 빙상이 지속적으로 뻗어나가 발트해를 가로 질러 조금씩 진출하여, 유럽 대륙의 북부와 러시아의 북서부에까지 이르렀다는 것이다.

그림 3.10. 여름 평균 기온이 현재보다 10°C와 12°C 더 차가울 때, 여름 해빙 이후 1인치의 눈이 남아 있을 지역을 컴퓨터 시뮬레이션에 의해 표시한 캐나다 지도.

그러한 시각에서 빙하기가 가능할까? 래리 윌리엄(Larry Williams)[9]는 이 질문에 답하기 위해 컴퓨터 시뮬레이션을 사용했다. 그는 캐나다에서 한 여름 동안 눈이 덮여 있으려면, 얼마나 많은 여름철 냉각과 추가 강설량이 필요한지 알아보고자 했다. 빙하기가 시작되도록 하기 위해서, 그는 보통의 겨울 강설량을 두 배로 늘렸고, 여름 기온을 2°C만큼 낮췄다. 또한 윌리엄은 지표면을 120m 높여서 허드슨만의 영향을 차단했으며, 여름 햇살의 강도를 약간 줄였다. 이 모든 조건들은 여름철에 눈이 덮여 있도록 하는 데에 유리하다. 그는 캐나다 북동부에 빙하에 불리하게 나오는 그의 결과를 검토하여, 그가 세운 용융 방정식이 맞는지 확인했다. 그의 방정식은 현실적이었다. 그는 기온을 2°C씩 계속 낮춰가면서, 따뜻한 계절의 보다 많은 강우가 비대신 눈으로 내리게 했다. 결국 그는 실험에서 허드슨 만의 북서부와 동부에 영구적으로 눈이 덮이게 했다(그림 3.10). 그는 캐나다 북동부에서 여름 평균 기온이 -1°C까지 떨어져야 한다는 것을 발견했다! 이것은 캐나다 북동부에 1인치 두께의 눈이 남아있기 위해서는, 10°C인 여름 평균 기온이 11°C 더 냉각되는 것에 해당한다. 윌리엄스는 캐나다 북동부에 영구적으로 눈이 덮여 있으려면, 이전에 그가 생각했던 것보다 훨씬 더 많은 여름철 냉각과 강설이 필요하다고 결론지었다. 이제 우리에게는 다시 온도의 하강과 강설의 증가를 일으키는 원인이 무엇인지에 대한 질문이 남는다.

기후 때문에 캐나다 북동부 지역을 빙하로 덮을 수 있었다 할지라도, 어떤 원인으로 더 냉각되고 더 강설이 많아져서, 얼음이 미네소타 주 미니애폴리스, 또는 미주리 주 세인트루이스까지 남쪽으로 확장되게 할 수 있었을까? 1인치만큼이라도 남쪽으로 확장되려면, 그런 개념에는 미니애폴리스의 대폭적인 기후 변화가 여전히 필수적이다. 유럽 북부와 아시아 북서부뿐만 아니라, 남반구와 열대지역의 산맥에서도 비슷한 문제가 발생한다.


과학자들은 당혹해하고 있다.

일부 과학자들이 말하는 것처럼, 빙하기가 쉽게 일어날 수 있다고 생각할 수도 있을 것이다. 그런데 다른 많은 과학자들은 빙하기 자체의 어려움 외에도, 빙하기의 원인을 알 수 없다는 것을 인정하고 있다.

빙하기를 처음으로 가정했던 1800년대 중반에, 대부분의 과학자들은 그러한 일이 일어날 수 있다는 것을 거의 믿지 못했다:

그 광대한 대륙 빙상의 개념은 지질학자들이 믿기 어려운 것이었다... 1850년경의 빙하기 이론의 상황은 앞의 빙하기라기보다 간빙기에 더 가까웠다. 버클랜드(Buckland)를 제외한 대부분의 나이든 지질학자들은 여전히 빙하기 이론을 거의 사용하지 않는 것으로 보였고, 그것을 받아들이더라도 거의 내키지 않게, 그리고 많은 단서 조항을 붙여서 였다.[10]

빙하기 이론은 너무나 지나친 것으로 보였다. 기후 변화는 대부분의 사람들이 받아들이기에는 너무 급진적이었다. 그러나 빙하기에 대한 증거들은 강력했다. 그래서 결국, 대부분의 과학자들은 어쩔 수 없이, 그 가능성을 인정했다.

그렇다면 그 다음 큰 질문은 ”어떻게?”이다. 과학자들은 1800년대 중반 이래로 이 문제에 대해 의문을 제기해왔다. 그것은 여전히 과학의 주요한 미해결 미스터리이다. 미국 News & World Report 지는 1997년 8월 18일부터 25일까지, 과학의 18가지 커다란 미스터리에 관한 기사를 연재했다. 그 미스터리 중 하나가 ”무엇이 빙하기를 일으켰는가?”[11]이었다. 1996년 6월, Earth라는 유명한 과학 잡지는 빙하기의 새로운 이론에 관한 기사를 발표했다. 다니엘 펜딕(Daniel Pendick)[12]은 이런 말로 기사를 시작했다: ”빙하기가 실제로 일어나지 않았다면, 그것은 공상과학처럼 들렸을 것이다.” 워싱턴 동부를 휩쓸었던 미졸라 호수의 홍수(Lake Missoula flood)에 관한 책에서, 데이비드 알트(David Alt)[13]는 다음과 같이 말하고 있다: ”많은 이론들이 있지만, 무엇이 빙하기를 일으켰는지에 대해서는 실제로 아무도 모른다.” 아주 먼 선사시대가 아니라, 최근에 끝난 빙하기의 원인을 오늘날의 과학자들이 알지 못한다는 것이 놀랍지 않은가? 몇 사람이 제안하듯이, 우리의 기후는 근본적으로 불안정하여, 조만간 또 다른 빙하기를 맞이함으로, 세계의 여러 나라들이 큰 타격을 입게 될 것인가? 아니면 빙하기가 특수한 조건에서 일어났으므로, 매우 희귀하여, 결코 다시 반복되지 않을 것인가?


빙하기 동안 축축했던 사막?

빙하기의 원인이 큰 미스터리 일뿐만 아니라, 이 시대와 관련된 다른 많은 수수께끼 같은 특징들도 미스터리이다.

그림 3.11. 지구 대기의 일반적인 순환. 위도 30°에서 아래쪽으로 흐르는 공기는 공기를 건조시킨다. (지도를 전체 크기로 보라.)

사막이나 반건조 지역은 오늘날 지구상에서 흔하다. 그런 지역은 특히 남위 30도와 북위 30도 주위에 널려 있는데, 그 부근에서 건조한 공기가 순환하기 때문이다(그림 3.11을 보라). 이 건조 및 반건조 지역을 연구하는 과학자들은 특별한 발견을 했는데, 한때는 많은 지역들이 축축한 습식 사막이었다는 것이었다!

미국 남서부의 그레이트 베이슨(Great Basin)에는 네바다, 유타 서부, 캘리포니아 남동부, 오레곤 남동부가 포함된다. 이 지역의 모든 강들은 안쪽으로 물이 배수된다. 그레이트 베이슨에서는 물이 흘러나가지 않는다. 그레이트 솔트 레이크(Great Salt Lake)는 유입과 증발이 균형을 이루어 거의 같은 수준으로 유지된다. 그레이트 베이슨 내에 있는 많은 작은 호수들은 말라 있다. 그 유역의 수직범위는 해수면 아래 86m인 데스 밸리(Death Valley)에서부터, 해수면 위 약 1,200m에 이르는 유역까지이다. 3,000m가 훌쩍 넘는 많은 높은 산들이 낮은 지역과 구분된다. 캘리포니아의 시에라 네바다 산맥이 바다로부터의 습한 서풍을 차단하기 때문에, 그레이트 베이슨은 여름에 습기가 있는 반건조 지역이다. 데스 벨리는 여름 평균 기온이 최고 44°C의 기록을 갖고 있으며, 연간 60mm의 비만 내린다. 실제로 세계에서 두 번째로 뜨거운 기온인 56.7°C의 기록을 데스 벨리는 갖고 있다.[14]

그레이트 베이슨이 한때 물이 풍부하고 신록이 우거졌다는 증거들은 풍부하다. 호수의 해안선은 산이나 언덕의 측면에 높이 새겨져 있다. 해안선 중 일부는 날카롭고 드러나게 침식되어 있어서, 아주 짧은 시간 동안 호수가 존재했음을 나타낸다. 빙하기 후반, 그레이트 베이슨은 120개의 호수들을 가지고 있었는데, 그 중 일부는 상당히 컸다(그림 3.12). 그레이트 솔트 레이크는 현재 크기의 약 6배였고, 깊이가 240m 더 깊었다.[15] 보네빌 호수(Lake Bonneville)라고 불렸던 이 호수는 미시간 호와 비슷한 크기였다. 고대 보네빌 호수의 해안선은 주변 언덕을 따라 매우 두드러지게 나타난다. 네바다 북서부의 라호탄 호수(Lahontan Lake)는 시에라 네바다 산맥의 동쪽에 일련의 상호 연결된 계곡으로 이어져 있었다. 그것은 이리 호수(Lake Erie)와 같은 크기였다. 피라미드 호수, 워커 호수(Walker Lake) 및 여러 다른 염호들은 모두 한때 거대한 라호탄 호수에 들어 있었다. 데스 밸리의 측면을 따라 눈에 띄는 경계는, 한때는 맨리 호수(Lake Manly)라고 불리는 약 180m 깊이의 호수를 보유했던 매우 뜨거운 분지였음을 나타낸다.[16] 캘리포니아 남동부에 있는 여러 호수들은 빙하기에 데스 밸리로 흘러들었다. 빙하기 동안에는 기후가 훨씬 더 시원하고, 더 습했던 것이 분명하다.

그림 3.12. 빙하기 동안 미국 남서부에 있었던 호수들.

두 번째 예는 사하라 사막이다. 지질학자들은 사하라 사막에서 코끼리, 기린, 버팔로, 영양, 코뿔소 및 다른 동물의 화석들이 발견되는 것에 놀라고 있다. 오늘날 이런 종류의 동물 다양성은 아프리카 사바나에서 볼 수 있다. 다양한 양서류, 하마, 악어, 물고기, 대합조개, 다른 수생생물 화석들은 그 사막이 한때 습한 환경이었던 것임을 증명한다.[17] 난쟁이악어(dwarf crocodile)는 20세기까지 살아남았으며, 사하라 서부 고지대의 여러 와디를 따라 고립되었던 호수 또는 웅덩이에서 살았었다.[18]

얕은 모래를 관통할 수 있는 레이더를 가진 위성[19]으로부터, 사하라 동부의 오래된 배수망(drainage network)이 관측되었다. 이 배수망은 대형 담수호와 나일강 계곡 크기의 여러 수로들로 구성되어 있었다. 오늘날, 사하라 사막 동부는 단지 30년에서 50년마다 한 번 정도 모든 지역에 비가 내린다! 사하라[20]와 중동의 다른 지역에서도 대형 배수망이 발견되었다.

한때 사람들은 동물과 함께 사하라 사막에 살았었다. 그들은 수많은 석기 도구, 도기류, 바위에 새겨진 동물의 그림 등을 남겼다.[21] 심지어 탐험가들은 낚싯대와 작살도 발견했다![22] 이 예술품 중 일부는 장관이다(그림 3.13). 사하라 탐험가인 제임스 웰라드(James Wellard)[23]는 암석 작품에 대해 이렇게 기술하고 있었다:

사하라 사막은 선사시대 회화의 진정한 미술 갤러리이다. ... 그 증거는 사하라 사막이 선사시대 세상에서 인구밀집 지역 중 하나라는 것을 보여주기에 충분하다... 그러나 사막 중 가장 접근하기 어려운 구석진 곳에는 문자 그대로 수천 마리의 열대어와 수생 동물, 거대한 소떼, 활과 부메랑으로 무장한 사냥꾼, 심지어는 여성과 어린이가 그들이 함께 살았던 오두막집과 함께 있는 '가정”의 모습들이 그려져 있다.


그림 3.13. 사하라의 빙하시대 작품(사진: Corbis)

습한 사하라와 최근에 사막 지역이 되어버린 모든 호수들은 빙하기를 둘러싼 또 다른 많은 기후 미스터리들 중 하나이다. 과학자들은 과거 사막 지역에 풍부한 강우가 있었던 이 ”다우기(多雨期)”가 빙하기 사이의 따뜻한 기간인 간빙기와 관련이 있을 것이라고 추측하고 있다. 우리는 지금 그러한 ”간빙기”에 살고 있는 것으로 보여진다. 그러나 우리가 간빙기에 있다면, 지금의 사막은 왜 건조할까? 다우기는 현재 사람들이 생각하는 시기가 아니라, 더 시원하고 더 습한 빙하기 동안에 발생했다는 설명이 더 합리적이다. 어쨌든, 이 ”습한” 사막을 어떻게 설명할 수 있을까?


온대동물과 한대동물이 공존했던 수수께끼

빙하기 화석은 종종 공존했을 것으로 예상되지 않았던 이상한 조합의 동물들을 보여준다. 추위에 적응된 동물의 화석이 예상보다 훨씬 더 남쪽에서 발견된다. 따뜻한 것을 좋아하는 동물들은 오늘날 그들이 위험을 무릅쓰고 가는 지역보다 훨씬 더 북쪽에서 화석으로 발견된다. 그러나 그들은 분명히 빙하기 환경에서 번창했던 것으로 보인다. 이 독특한 동물의 조합에 특별한 이름이 붙어있다 – ”부조화의 조합(disharmonious associations)”.

이들 부조화의 조합은 예외가 아니라, 규칙이 되고 있다. 추운 날씨를 잘 견디는 동물과 더운 날씨를 잘 견디는 동물의 혼합은 시베리아, 알래스카, 유콘 준주를 포함하여 북반구 전체에 걸쳐[24] 발견된다.[25] 부조화의 조합은 남반구에서도 발견된다.[26]

부조화의 조합은 대형 포유류뿐만 아니라, 작은 포유류, 식물, 곤충, 새, 양서류, 파충류에도 적용된다! 그라함(Graham)과 룬델리우스(Lundelius)는 이렇게 말한다[27]:

홍적세 후기의 사회는 오늘날 이소(異所)성의(기후와 연관되지 않은) 생물 종들이, 그리고 아마도 생태학적으로 조화성이 없는 생물 종들이 공존했던 것이 특징이다... 이런 부조화의 조합은 홍적세 후기(빙하기)의 생물상... 육지 무척추동물... 하등한 척추동물... 새들... 그리고 포유류에서도 나타난다.

가장 특별한 사례 중 하나는 영국, 프랑스, 독일에서 하마(hippopotamus)의 화석이 순록(reindeer), 사향소(musk oxen), 털북숭이 매머드 등의 화석과 함께 존재한다는 사실이다.[28] 서트클리프(Sutcliffe)는 이렇게 말했다[29]:

(현재는 적도 지역에 사는) 하마가 살기 좋은 환경을 찾아가다보니까, 영국과 웨일즈의 대부분 지역을 가로질러, 현재는 황무지인 요크셔 광야에까지 퍼지게 되었다.

게다가, 하마 화석은 희귀한 것이 아니라, 영국에서 흔히 볼 수 있다:

하마 화석은 영국과 웨일즈 지방의 약 100개 지역에서 발견되었다.[30]

북아메리카에서도 대부분의 홍적세 말기의 동물군과 식물상은 부조화의 조합을 보여준다.[31] 순록은 알라바마와 그루지아처럼 먼 남쪽의 따뜻함을 좋아하는 동물들과 섞여있었다. 온화한 기후를 선호하는 오소리, 검은 발의 흰 족제비, 땅 나무늘보, 낙타, 거대한 비버 등은 털북숭이 매머드 및 추위를 견디는 다른 동물들과 섞여서, 알래스카에서 훨씬 더 먼 북쪽에서까지 발견된다.[32]

부조화의 조합은 많은 논란을 불러 일으켜왔다. 설명하기는 어렵지만, 대부분의 과학자들은 이제 빙하기의 부조화의 조합이 사실임을 인정하고 있다.[33] 이것이 딜레마인 이유는 빙하기의 기후가 현재의 기후보다 훨씬 추웠을 것으로 추정되고 있기 때문이다. 그러나 빙하기의 화석에서 얻은 증거들은 온화했던 겨울과 시원했던 여름으로, 균등화된 기후를 의미한다. 케네스 콜(Kenneth Cole)[34]이 매우 추운 빙하기(very cold Ice Age) 컴퓨터 시뮬레이션을 실시했을 때 실감했듯이, 관측된 화석 증거로부터 추론한 기후는 당혹스러웠다:

고생물학자들은 과거의 기후가 균등했다고 종종 결론을 내리기는 하지만, 기후순환 모델을 사용하여 대륙 내부에 균등한 기후를 만들어내는 것은 어렵다.

빙하기 동안의 부조화의 조합에 대한 설명은 150년이 넘는 논쟁을 불러왔다. 콜[35]은 또 다음과 같이 말한다[35]:

고생물학적 해석에서 가장 오랫동안 진행되고 있는 철학적 논쟁 중 하나는, 과거의 사회가 지금과 전혀 닮지 않았다는 것을 나타내는, 혼합 또는 부조화의 조합이다. 이러한 혼합된 조합은 우리의 세계관에 도전한다... 부조화의 조합은 일반적으로 과거의 기후가 오늘날의 기후보다 훨씬 더 ”균등”했다는 것으로 설명된다.

사실, 이런 부조화의 조합은 빙하기 세계관의 본 줄거리에 도전하고 있다. 이런 수수께끼에 대해 어떤 가능한 해결책도 나타나지 않은 것으로 보인다.


빙하기 말의 대량 멸종

과학자들은 빙하기 동안에 동물 및 식물과 곤충들이 부조화의 조합을 이루고 있다는 사실을 받아들이기 매우 어려워하고 있다. 그런데 거기에다가, 기후가 온난해지기 시작하고, 생물들이 살 수 있는 지역이 넓어지기 시작했던 빙하기 말기에, 혼합되어 살아가던 동물들이 대량 멸종과 함께 갑자기 끝나버린 이유를 설명해야 하는 문제에 직면해 있는 것이다.

빙하기 말에 시베리아에 살던 털북숭이 매머드들만 죽은 것이 아니라, 다른 모든 곳에서도 죽었다. 톨마초프(Tolmachoff)[36]는 털북숭이 매머드들이 사라진 문제를 다음과 같이 요약하고 있다:

우리는 한때 변화무쌍한 물리지리학적 조건에서 넓은 지역에 걸쳐 명백히 매우 번성했던 많은 수의 동물들이 지질학적으로 매우 짧은 시간 안에 죽었다는 그 멸종에 대해 설명해야만 한다.

최근에 예상치 못했던 약간의 사건적 변화가 일어났다. 과학자들은 털북숭이 매머드가 빙하기의 거의 마지막에 멸종됐다고 믿었었는데, 시베리아 북쪽 북극해의 랑겔 섬에서 발견된 매머드 화석의 탄소-14 연대는 기원전 2000년 전으로 확인되었다.[37] 즉 털북숭이 매머드는 빙하기 말기를 넘어서, 비교적 최근까지 고립된 섬에 살아남았었다는 것이다. 여기에는 두 가지 가능성이 있는데, 탄소-14의 연대가 잘못되었거나, 또는 빙하기가 기원전 2000년(약 4,000년 전)에 끝났다는 것이다.

매머드 스텝지대의 다른 많은 동물들이 털북숭이 매머드와 함께 동시에 대륙 전체에서 멸종되거나 사라졌다. 북아메리카 하나에서만도 33개 속 135개 종의 대형 포유류들이 사라졌다.[38] 빙하기 말에 북아메리카에서 22개 속의 새들이 멸종했다.[39] 남아메리카와 호주를 포함한 다른 대륙들에서는 빙하기와 그 직후에 멸종 위기에 처했다. 전체 대륙에서 45kg 이상 되는 대형 포유류 167개 속이 사라졌다.[40] 그 이유는 무엇일까?

과학자들은 왜 멸종이 일어났는지 모른다. 그리고 그 질문은 200년 이상 동안 그들을 괴롭혀왔다! 기후와 환경이 개선되고 있던 시점인, 빙하기 말에 대량 멸종이 일어난 이유는 오늘날까지도 수수께끼로 남아 있다. 와드(Ward)[41]는 다음과 같이 말하고 있다:

이 거대한 멸종은 진정한 대량 멸종으로, 고생물학의 가장 근본적인 미스터리 중 하나이다.



참고문헌
1. Hobbs, H., Origin of the driftless area by subglacial drainage — A new hypothesis, Geological Society of America Special Paper 337, Geological Society of America, Boulder, CO, p. 93–102, 1999.
2. Klassen, R.W., Late Wisconsinan and Holocene history of southwestern Saskatchewan, Canadian Journal of Earth Sciences 31:1822–1837, 1994.
3. Thiede, J., and H.A. Bauch, The Late Quaternary history of northern Eurasia and the adjacent Arctic Ocean: An introduction to QUEEN, Boreas 28:3–5, 1999.
Thiede, J., and J. Mangerud, New map revises extent of last ice sheet over Barents and Kara Seas. Eos 80(42):493–494, 1999.
4. Rosqvist, G., Quaternary glaciations in Africa, Quaternary Science Reviews 9:281–297, 1990.
5. Crickmay, C.H., The hypothesis of unequal activity; in: Theories of landform development, W.N. Melhorn and R.C. Flemal (Eds.), George Allen & Unwin, London, p. 7, 1975.
6. Wright, G.F., The Ice Age in North America,Bibliotheca Sacra Co., Oberlin, OH, 1911.
7. Ibid., p. 569.
8. Pickard, J., Comments on 'Wastage of the Klutlan ice-cored moraines, Yukon Territory, Canada” by Driscoll (1980), Quaternary Research 22(2):259, 1984.
9. Williams, L.D., An energy balance model of potential glacierization of northern Canada, Arctic and Alpine Research 11:445–456, 1979.
10. Chorley, R.J., A.J. Dunn, and R.P. Beckinsale, The history of the study of landforms or the development of geomorphology — Volume one: Geomorphology before Davis, John Wiley & Sons, New York, p. 213, 232, 1964.
11. Watson, T., What causes ice ages? U.S. News & World Report 123(7):58–60, 1997.
12. Pendick, D., The dust ages, Earth 5(3):22, 1996.
13. Alt, D., Glacial Lake Missoula and its humongous floods, Mountain Press Publishing Company, Missoula, MT, p. 180, 2001.
14. Schmidli, R.J., Weather Extremes,NOAA Technical Memorandum NWS WR-28, U.S. Department of Commerce, Rockville, MD, p. 1, 1991.
15. Smith, G.I., and F.A. Street-Perrott, Pluvial lakes in the Western United States; in: Late-Quaternary environments of the United States, H.E. Wright Jr. (Ed.), University of Minnesota Press, Minneapolis, MN, p. 190–212, 1983.
16. Hooke, R.L., Lake Manly shorelines in the eastern Mojave Desert, California, Quaternary Research 52:328–336, 1999.
17. Pachur, H.J., and S. Kröpelin, Wadi Howar: Paleoclimatic evidence from an extinct river system in the southeastern Sahara, Science 237:298–300, 1987. Kröpelin, S., and I. Soulié-Märsche, Charophyte remains from Wadi Howar as evidence for deep Mid-Holocene freshwater lakes in the Eastern Sahara of Northwest Sudan, Quaternary Research 36:210–223, 1991.
18. Charlesworth, J.K., The Quaternary era, Edward Arnold, London, p. 1113, 1957. Shaw, B.D., Climate, environment and prehistory in the Sahara, World Archaeology 8(2):133–149, 1976.
19. McCauley, J.F., et al., Subsurface valleys and geoarcheology of the eastern Sahara revealed by shuttle radar, Science 218:1004–1020, 1982.
20. Chorowicz, J., and J. Fabre, Organization of drainage networks from space imagery in the Tanezrouft plateau (Western Sahara): Implications for recent intracratonic deformations, Geomorphology 21:139–151, 1997.
21. Kröpelin, S., and I. Soulié-Märsche, Charophyte remains from Wadi Howar as evidence for deep Mid-Holocene freshwater lakes in the Eastern Sahara of Northwest Sudan, Quaternary Research 36:210–223, 1991. Coulson, D., Preserving Sahara’s prehistoric art, National Geographic 196(3):82–89, 1999.
22. Shaw, B.D., Climate, environment and prehistory in the Sahara, World Archaeology 8(2):142, 1976.
23. Wellard, J., The great Sahara, E.P. Dutton and Co., New York, p. 33–34, 1964.
24. Howorth, H.H., The Mammoth and the flood — An attempt to confront the theory of uniformity with the facts of recent geology, Sampson Low, Marston, Searle, & Rivington, London, 1887; reproduced by The Sourcebook Project, Glen Arm, Maryland. Stuart, A.J., Mammalian extinctions in the Late Pleistocene of northern Eurasia and North America, Review of Biology 66:453–562, 1991. Rensberger, J.M., and A.D. Barnosky, Short-term fluctuations in small mammals of the late Pleistocene from eastern Washington; in: Morphological change in Quaternary mammals of North America,R.A. Martin and A.D. Barnosky (Eds.), Cambridge University Press, Cambridge, NY, p. 330, 1993.
25. Guthrie, R.D., Mosaics, allelochemics and nutrients — An ecological theory of late Pleistocene megafaunal extinctions; in: Quaternary extinctions: A prehistoric revolution, P.S. Martin and R.G. Klein (Eds.), University of Arizona Press, Tuscon, AZ, p. 259, 1984. Graham, R.W., and E.L. Lundelius Jr., Coevolutionary disequilibrium and Pleistocene extinctions; in: Quaternary extinctions: A prehistoric revolution, P.S. Martin and R.G. Klein (Eds.), University of Arizona Press, Tuscon, AZ, p. 237, 1984.
26. Graham, R.W., and E.L. Lundelius Jr., Coevolutionary disequilibrium and Pleistocene extinctions; in: Quaternary extinctions: A prehistoric revolution, P.S. Martin and R.G. Klein (Eds.), University of Arizona Press, Tuscon, AZ, p. 238, 1984.
27. Ibid., p. 224.
28. Nilsson, T., The Pleistocene — Geology and life in the Quaternary ice age, D. Reidel Publishing Co., Boston, MA, p. 223–233, 1983. Sutcliffe, A.J., On the tracks of Ice Age mammals, Harvard University Press, Cambridge, MA, p. 24, 1985.
29. Sutcliffe, A.J., On the tracks of Ice Age mammals, Harvard University Press, Cambridge, MA, p. 120, 1985.
30. Stuart, A.J., Pleistocene vertebrates in the British Isles, Longman, London, p. 52, 1982.
31. Graham and Lundelius, Coevolutionary disequilibrium and Pleistocene extinctions, p. 236.
32. Guthrie, R.D., Late Pleistocene faunal revolution: A new perspective on the extinction debate; in: Megafauna and man — Discovery of America’s heartland, scientific papers, volume 1, The Mammoth Site of Hot Springs, South Dakota, Inc., Hot Springs, SD, p. 45, 1990. Stuart, A.J., Mammalian extinctions in the Late Pleistocene of northern Eurasia and North America, Review of Biology 66:523, 1991.
33. Alroy, J., Putting North America’s end-Pleistocene megafaunal extinction in context; in: Extinctions in near time — Causes, contexts, and consequences, D.E. MacPhee (Ed.), Kluwar Academic/Plenum Publishers, New York, p. 107, 1999.
34. Cole, K.L., Equable climates, mixed assemblages, and the regression fallacy; in: Late Quaternary environments and deep history: A tribute to Paul S. Martin, D.W. Steadman and J.I. Mead (Eds.), The Mammoth Site of Hot Springs, South Dakota, Inc., Hot Springs, SD, p. 133, 1995.
35. Ibid., p. 131.
36. Tolmachoff, I.P., The carcasses of the mammoth and rhinoceros found in the frozen ground of Siberia, Transactions of the American Philosophical Society 23:65, 1929.
37. Vartanyan, S.L., V.E. Garutt, and A.V. Sher., Holocene dwarf mammoths from Wrangel Island in the Siberian Arctic, Nature 362:337–340, 1993. Lister, A.M., Mammoths in miniature, Nature 362:288–289, 1993. Long, A., A. Sher, and S. Vartanyan, Holocene mammoth dates, Nature 369:364, 1994.
38. Ward, P.D., The call of distant mammoths — Why the Ice Age mammoths disappeared, Springer-Verlag, New York, p. 141, 1997. Monastersky, R., The killing fields — What robbed the Americas of their most charismatic mammals? Science News 156:360, 1999.
39. Grayson, D.K., Pleistocene avifaunas and the overkill hypothesis, Science 195:691–693, 1977.
40. Martin, P.S., and D.W. Steadman, Prehistoric extinctions on islands and continents; in: Extinctions in near time — Causes, contexts, and consequences, D.E. MacPhee (Ed.), Kluwar Academic/Plenum Publishers, New York, p. 17, 1999.
41. Ward, P.D., The call of distant mammoths — Why the Ice Age mammoths disappeared, Springer-Verlag, New York, p. 120, 1997.



번역 - 강기태

링크 - https://answersingenesis.org/environmental-science/ice-age/the-mystery-of-the-ice-age/

출처 - Frozen in Time

미디어위원회
2017-06-22

빙하기 탐구 - 멈춰버린 시간. 2장 

: 왜 시베리아에 살았을까? 

(Frozen in Time, Chapter 2. Why Live in Siberia?)

by Michael J. Oard, Ph.D.


      털북숭이 매머드의 죽음에 관한 이론을 탐구하기 전에, 몇 가지 예비 질문에 답할 필요가 있다. 가장 중요한 것은, 무엇이 수백만 마리의 털북숭이 매머드를, 겨울에는 혹독하게 춥고, 여름에는 매우 위험한 습지로 변하는, 그 먼 북쪽으로 이끌어갔는가? 그리고 그들이 거기 있는 동안 무엇을 먹고 살았는가?


시베리아의 겨울과 여름의 혹독한 환경

1970년대에 사향소(musk ox)가 시베리아 북부의 타이미르(Taimyr) 반도와 북극해에 위치한 랭글(Wrangel) 섬에서 다시 발견되었다.[1] 만약 털북숭이 매머드와 다른 동물들을 클로닝(cloning, 복제)을 통해 되살릴 수 있다면, 그들은 시베리아에서 생존할 수 있을까? 일부 과학자들은 심지어 냉동된 매머드 사체의 세포들을 아시아 코끼리의 암컷에게 주입하여 잡종을 만들어낼 수 있다고 제안하기도 한다.

시베리아의 겨울은 혹독한 추위로 잘 알려져 있다(아래의 그림 2.1을 보라). 시베리아의 겨울 평균 기온은 섭씨 영하 18도 이하이다. 하지만 겨울에 최저 기온은 영하 40도 이하로 내려가는 것이 보통이다. 북반구에서 기록된 최저 기온은 베르코얀스크(Verkhoyansk)에서 영하 68도였다.[2] 큰 포유류들이 상당한 추위를 견딜 수 있기는 하지만, 그들이 겨울의 혹독한 눈보라와 극심한 냉기를 견딜 수 있었을까? 시베리아의 이런 추운 기간은 1년에 거의 9개월 동안 지속된다.

흥미롭게도, 오늘날 시베리아에는 큰 포유류가 거의 살고 있지 않다. Vereshchagin과 Baryshnikov는 털북숭이 매머드에 관한 일부 러시아 과학자들의 의견을 이렇게 대변한다[3]:

”짙은 눈보라를 동반하는 매서운 바람이 부는 오늘날 유라시아의 북극 툰드라 지역에 매머드가 살아갈 수 있는 곳은 없을 것이다.”

주류 과학자들은 빙하기 동안에는 겨울 기온이 6~12℃ 정도 더 내려갔을 가능성이 있다고 믿고 있는데, 이는 생존을 더욱 어렵게 만드는 조건이 된다.

그림 2.1. 1월과 7월의 평균 기온 분포

반면에, 여름은 거의 종일 내리쬐는 햇빛 때문에 꽤 따뜻해 질 수 있다. Digby는 시베리아의 야쿠츠크(Yakutsk)에서 보낸 일주일을 이렇게 묘사하고 있다.[4] ”수은주는 밤에도 낮에도 결코 영상 27℃ 이하로 떨어지지 않았어요! 동물들이 겨울에 살아남았다고 가정하면, 여름은 편안했을 것입니다.”

어떤 사람들은 털북숭이 매머드가 따뜻한 봄과 여름 동안에 시베리아로 쉽게 이동할 수 있었을 것으로 생각하고 있다. 초목이 무성한 여름이 지난 후, 겨울이 오기 전 가을에, 그들은 다시 남쪽으로 이동했을 것으로 추정했다. 비록 몇몇 과학자들이 이 가능성에 의미를 둘지라도[5], 이 이론은 치명적인 결함을 가지고 있다. 매머드는 겨울이 되기 전에 수천 마일을 이주해야만 하므로, 이로 인해 매머드는 상당한 에너지를 소모했을 것이다.[6] 매머드는 다리가 무거워서 다른 포유동물들보다 걷는데 훨씬 더 많은 에너지가 필요하다. 호워스(Howorth)는 시베리아 북동부에 있는 어떤 동물이라도 추운 겨울을 피하기 위해 더 멀리 이동해야 한다는 점을 지적한다.[7] 그들 경로의 바로 남쪽에는 북태평양이 있기 때문에, 매머드들이 남쪽으로 가기 위해서는 서쪽으로 몇 천 마일을 더 멀리 여행하며 내려가야 했다. 이주 이론의 또 다른 문제점은, 봄에 시베리아 북부로 다시 돌아온다는 것이 이치에 맞지 않는다는 것이다. 시베리아 남부나 더 남쪽에서 적절한 식량 공급이 가능했을 것이기 때문이다.[8] 따라서 북쪽으로 이동할 필요가 없었을 것이다. 마지막 문제점으로 매머드는 임신 기간이 22개월 정도 되기 때문에, 이런 종류의 연간 이주는 상당히 위험한 도전이 될 수 있다. 매머드 전문가인 게리 헤인즈(Gary Haynes)는 이런 거대한 이주에 대해 다음과 같이 요약했다[9] :

매머드는 순록이 여행하듯이 거의 일 년이 걸리는 왕복여행을 할 수 없었을 것이다. 왜냐하면, 장비목의 동물(코가 긴 동물)은 식량 공급 요구량이 너무 많아 지속적인 여행을 할 수 없으며, 무리의 더 작은 멤버들, 특히 12세 이하의 젖을 뗀 새끼들의 경우, 나이든 성체들과 같은 속도로 여행을 할 수 없었을 것이기 때문이다. 게다가, 매머드의 임신 기간이 적어도 22개월이나 되고, 임신한 암컷들은 임신 기간 동안 두 번이나 연간 이주를 했어야 했다. 이러한 연간 이주는 그들 자신과 자궁 내 태아에게 견딜 수 없는 부담을 지우게 된다.

그림 2.2. 북반구의 영구동토층 지도 (영구동토층은 일반적으로 연평균 기온이 -6 ~ -8℃인 등온선의 북쪽에 위치한다.)

여름 이주가 가능하지 않았을 것이라는 또 다른 압도적인 이유가 있다. 그것은 여름에 생겨나는 늪지이다. 여름 늪지가 있는 기간 동안 여행하는 것은 매머드에게는 치명적이었을 것이다. 시베리아는 현재 100m 이상 깊이의 흙이 영구히 얼어 있는 영구동토층 지역에 위치하고 있다. 매 여름마다 상부의 약 0.5m 정도가 녹는다. 그 아래의 땅은 계속 얼어붙어있다. 지표층에서 녹은 물은 거대한 습지대와 물이끼가 있는 소택지를 형성한다. 결과적으로 여름 여행은 사람과 짐승 모두에게 힘든 일이 된다.[10] Pfizenmayer는 그의 팀이 여름 동안 베레소프카(Beresovka) 매머드가 있는 곳까지 시베리아를 횡단 여행하는 데 엄청난 노력을 기울였다고 보고하고 있다.[11] 그의 팀은 한 겨울 중반이 되어서야 매머드를 끌어낼 수 있었다. 그는 끈적거리는 습지의 진흙은 많은 동물 떼들을 죽였을 것이라고 결론 내렸다. Tolmachoff는 이 끈적끈적한 진흙이 5cm 정도만 있어도, 사람들이 툰드라 지대를 통행할 수 없었을 것이고, 30cm 혹은 그 이상의 진흙 수렁은 매머드를 가두기까지 했을 것이라고 말한다.[12] 특히 털북숭이 매머드는 기둥 모양의 다리 구조와 뻣뻣한 다리 운동으로 인해 늪 같은 지반을 헤쳐 나가는 데에 어려움을 겪었을 것이다.[13] 또한 최대 보폭 길이를 약간 초과하는 어떠한 도랑도 통과하지 못했을 것이다. Vereshchagin는 분명하게 선언한다[14] : ”매머드와 들소는 오늘날 시베리아와 같은 툰드라 지역에서 살 수 없었을 것이다.”

사향 소, 순록(caribou), 무스(moose, 큰 사슴) 같은 대형 포유류들은 오늘날 고위도의 북극 지방에서 살아가면서 생존하고 있다. 하지만 이 초식동물들은 늪지대에 살기 적합하며, 오늘날 시베리아에서 자라는 식물들을 먹을 수 있다. 순록은 눈 속에서 냄새를 맡아 이끼를 찾아내서 먹는다. 그들은 더 심한 겨울이 오기 전에 남쪽으로 이주한다. 그들의 발굽은 눈과 늪지에서 걷기에 적합하다. 무스는 긴 다리를 가지고 있어서 비교적 깊은 눈이나 습지를 건널 수 있다. 이들 초식동물들은 바깥쪽으로 벌어진 발굽을 가지고 있어서 무게를 분산시킬 수 있기 때문에 습지를 쉽게 헤쳐 나갈 수 있다.[15] 그들의 장점과 상관없이, 시베리아 겨울은 여전히 이 포유류들에게 고통스럽다 : ”북부 유제류(ungulates, 발굽이 있는 동물)는 겨울 동안 체중과 몸 상태가 서서히 감소한다.”[16] 매머드들과 많은 다른 종류의 포유동물들은 시베리아의 여름 환경에 적합하지 않다. 그렇다면 시베리아에서 수백 만 마리의 매머드들은 무엇을 하고 있었을까?


풍요 가운데 굶어 죽다?

빙하기의 포유동물들이 추운 겨울과 늪지대가 있는 여름 동안에 살아남았다할지라도, 그들은 여전히 식량을 찾아야 했을 것이다. 시베리아의 여름에는 풍부한 식물들이 있다. 몇몇 과학자들은 매머드와 다른 동물들이 이런 풍부한 식물들로 살아남을 수 있었다고 믿고 있다. 파랜드(Farrand)는 다음과 같이 낙관적으로 얘기하고 있다[17] :

”고위도의 북극지역에 가본 적이 없는 사람들은 초목, 꽃, 관목 및 난쟁이나무 등 비교적 울창한 초목에 대한 개념을 거의 갖고 있지 않은 것으로 보입니다. 그리고 하루 24시간 계속해서 햇빛이 비치는 놀라운 광경 역시 상상하지 못하겠죠!”

파랜드의 논리에는 한 가지 심각한 문제점이 있다. 실제로 수백만 마리의 포유류들이 풀과 작은 관목들을 먹었다. 하지만 오늘날의 시베리아 초목은 주로 늪지 식물과 소택지 식물들이다. 현재의 식물들에는 이 거대한 동물들의 건강에 필요한 영양분이 부족하다.[18] 현재 툰드라의 남쪽에 있는 타이가(taiga) 숲 식물들 또한 이러한 동물들을 위한 영양분을 공급하기에 불충분하다.[19] 타이가 식물을 포함하여 오늘날 시베리아에서 자라는 가문비나무, 소형의 오리나무, 자작나무 등의 나무껍질에는 포유류에게 유독한 독소가 많이 들어 있다.[20] 동물들은 이러한 빈약한 영양 공급 속에서 생존할 수 없다. 과학자들은 이러한 식량 부족을 ”생산성 역설(the productivity paradox)”이라고 명명했다.[21] 다시 말해, 오늘날 시베리아에는 매머드와 다른 동물들을 위한 식량은 거의 없다! 작은 초원지대가 있는 것은 사실이지만, 이곳에 사는 모든 동물들에게, 특히 몸집이 큰 포유동물들을 위한 식량으로는 충분하지 않다. 털북숭이 매머드와 그들의 동료들은 외관상 풍요로운 식물이 있는 가운데 굶어 죽었을 것이다.

매머드의 식사량과 음수량을 이해한다면 문제는 더 복잡해진다. 털북숭이 매머드는 그들과 크기가 매우 비슷한 현대의 코끼리와 비교될 수 있다. 거대한 털북숭이 매머드는 하루에 180~300kg의 즙이 많은 음식을 필요로 했을 것이다.[22] 시베리아에서 이러한 많은 량의 먹이를 어디에서 구했을까?

또한 털북숭이 매머드는 매일 140~200리터의 물을 마셔야 했을 것이다.[23] 겨울 동안에 시베리아의 거의 모든 물은 얼어 있다. 어떤 사람들은 이 매머드가 절벽에서 고드름을 깨기 위해 어금니를 사용하거나, 물을 얻기 위해 눈을 먹었을 수도 있다고 제안했다.[24] 그러나 눈이나 얼음을 먹는 것은 물을 얻기 위한 효율적인 방법이 아니다. 그것은 몸을 춥게 만든다. 만약 그랬다면, 겨울 동안 매머드에 의해 소모된 에너지의 절반은 그들의 위장 속의 눈을 녹이고 위장을 따뜻하게 하는데 사용되었을 것이다.[25] 또한 시베리아의 평원에는 고드름 달린 절벽이 많지 않다.


기후 수수께끼

이제 분명해 보이는 것은 털북숭이 매머드가 살았을 당시, 시베리아의 기후와 환경은 지금보다 훨씬 더 따뜻했다는 것이다. 그런데 역설적으로 그들은 빙하기에 살았다. 빙하기 기후에 대한 컴퓨터 모델은 질적으로 다양하지만, 결과는 일관성이 있다: 즉, 시베리아는 지금보다 훨씬 더 추웠어야 했다. Arkhipov는 이렇게 결론을 내린다[26] : ”빙하기와 아빙기(glacial and stadial stages)에 시베리아의 기후는 현재보다 훨씬 추웠을 것이다.” 아빙기는 빙하기의 가장 추운 기간이다. Manabe와 Broccoli는 그들의 빙하기 기후 모델을 사용하여, 현재의 시베리아 겨울보다 12℃ 더 추웠을 것으로 계산했다.[27]

많은 빙하기 컴퓨터 시뮬레이션은 심지어 시베리아에 빙상(ice sheet)을 만들기도 한다. 좋은 예는 Dong과 Valdes의 시뮬레이션이다.[28] 더욱 흥미로운 일반적 순환 모델들 중 하나는 처음 무에서부터 빙상이 만들어지는 것을 시도한 시뮬레이션이었다. 지구일조량을 6%까지 줄임으로써 빙상의 성장을 유도했다. 역설적인 것은 이 시뮬레이션 결과, 알래스카, 시베리아의 일부 지역 및 서부 캐나다에 영구적인 적설을 만들었지만, 실제로 빙상이 발달됐던 지역에는 눈이 거의 덮이지 않았다. 빙하기 동안에 얼음이 형성됐던 지역과 정반대가 된 것이다:

”우리는 시뮬레이션을 통해 빙하형성을 만들었지만, 마지막 빙하기에 실제 빙하가 존재했던 지역 외곽에 형성되었다.”[29]

이러한 컴퓨터 시뮬레이션들은 시베리아에 빙하가 얼마나 쉽게 형성될 수 있는지를 보여주고 있지만, 어떤 점에서는 매우 잘못된 것이다. 시베리아가 빙하로 뒤덮였을 때, 털북숭이 매머드가 어떻게 시베리아에서 살아남을 수 있었을까?

빙하 암설(glacial debris)은 시베리아, 알래스카 및 유콘의 산들만이 실제로 빙하로 덮여 있었음을 나타낸다. 매머드 뼈들이 발견된 저지대는 결코 빙하가 없었다! 그것은 빙하기에 동물들이 이 지역에서 어떻게 살 수 있었는지를 설명해 준다. 그런데 왜 이 저지대는 빙하가 형성되지 않았을까?

그림 2.3. 빙하기 동안 시베리아, 알래스카 및 유콘의 빙하 및 비빙하 지역. 얕은 대륙붕은 330 피트(100m)의 등심선으로 표시했다.

자기들의 모델을 정당화하기를 열망하는 일부 동일과정설 과학자들은, 더 추운 빙하기 기후가 털북숭이 매머드들이 시베리아에서 살 수 있도록 도왔을 것이라고 말한다. 더 추운 기온으로 인해 영구동토층이 덜 녹았을 것이고, 이로 인해 툰드라와 타이가 지역이 여름에 습지가 훨씬 적게 형성됐을 것이라는 것이다. 만약에 그곳이 얼은 상태로 유지됐었다면, 이 상황은 확실히 매머드가 늪지대를 헤쳐 나가기 쉽게 했을 것이다. 그러나 더 추운 기후로 인해 생장 기간이 짧아져서, 식량과 물은 많이 부족한 상태가 됐을 것이다. 게다가 일부 동물들은 혹독했던 빙하기보다, 훨씬 덜 추운 오늘날의 추위에서도 견디기 힘들어 한다.

다시 한 번 말하지만, 모든 동물들이 그렇게 추운 빙하기 동안에 무엇을 먹고 살았을까? 그러한 추운 기후에서는 먹을 수 있는 식용 식물이 많이 자라지 않는다. 더 추운 빙하기의 기온은 생산성 역설을 악화시킨다. Charles Schweger는 이 문제를 이렇게 설명한다[30] :

아마도 일차 생산성이 여전히 낮았던 시기에 북쪽의 빙하 가장자리(빙하 근처)에 더 크고 더 다양한 유제류가 과거에 존재했었다는 것은 역설적이다. 지나치게 단순화해서 질문을 한다면, 빙하기 때 베링기아(Beringia) 지역의 겉보기에 살아가기 불가능한 조건 하에서, 어떻게 매머드들이 살아갈 수 있었을까? (베링기아는 동시베리아, 알래스카 및 유콘 지역이다.)

그 곳에 살았던 동물들을 살펴볼 때, 기후의 역설은 더 악화된다. 물론 죽은 뼈는 말할 수 없지만, 동물들은 그들이 살았던 환경에 대한 단서를 제공할 수 있다. 다양한 포유동물들이 살았었다는 것과, 그들의 생태학적 요구 사항들은 오늘날의 혹독한 시베리아 환경과는 매우 차이가 나며, 빙하기 기후 시뮬레이션과도 많은 차이가 난다. 빙하기 동안의 시베리아 환경은 동아프리카 세렝게티(Serengeti) 평원의 환경과 비교할만하다![31]

실제적으로 이 모든 대형 포유류들은 다양한 초본식물, 즉 주로 목초를 먹는 초식동물이었다는 사실에 기초하여, 우리는 시베리아의 환경을 재현할 수 있다. 이에 대한 추론의 기초는 다음과 같다. (1)생존한 포유동물의 먹이 선호도. (2)매머드는 코끼리와 유사하다. (3)냉동 사체의 위 내용물에 풍부한 풀이 들어있었다. (4)미국 남서부의 동굴에 매머드의 배설물이 보존되어 있다.[32] 이것으로부터 우리는 빙하기 동안에 시베리아가 거대한 목초지였다고 결론을 내릴 수 있다! 내가 털북숭이 매머드 시대의 시베리아 환경을 가장 잘 이해하고 있다고 생각하는 데일 거스리(Dale Guthrie)는 시베리아를 매머드 스텝지대(mammoth steppe)라고 부르고 있다. 스텝지대란 풀이 무성하고, 나무가 거의 없는, 반 건조 초원이다. 오늘날 세계에는 두 개의 주요한 스텝지대가 있다: (1)미국 로키산맥의 동쪽에 있는 고원지대. (2) 중앙아시아 산맥의 북쪽 경사면.

몇몇 작은 포유류들은 거스리의 매머드 스텝지대 이론을 특히 더 강화시켜주고 있다. 오소리와 흰족제비(badgers and ferrets)의 뼈를 포함하여 작은 포유류의 뼈들이 발견되었다. 그들은 오늘날 짧은 풀이 있는 평원에서 살아가고 있는데, 북아메리카 중부인 로키산맥 동쪽의 고원 평야와 같은 곳에서 살고 있다.[33] 이 동물들은 꽤 깊은 곳까지 굴을 파고 살기 때문에, 영구동토층이 있는 곳에서는 거의 살아갈 수 없다. 또한 땅다람쥐(ground squirrels)가 넓게 분포하고 있었던 것으로 나타났는데 이것은 북극지역에 초원(grassland)이 넓게 분포했음을 가리킨다. 이들 땅다람쥐는 개방된 공간에서 살아가며, 에너지가 풍부한 씨앗과 단백질이 풍부한 초본을 필요로 한다.[34]

이 많은 동물 집단들이 계속 유지되려면, 그 초원에는 다른 초원들과 비슷하게 다양한 식물들이 풍부하게 있어야만 한다. 거스리는 식물 역시 매우 다양했다는 논리적인 결론을 내렸다.[35] 그 다양성은 오늘날의 식물에 없는 다양성이었다.[36] 키 큰 관목과 나무들의 작은 군락들이 이 거대한 초원지대를 가능하게 했을 것이다. 이것들이 영구동토층에 보존되어 발견되고 잇는 것이다.[37] 수많은 사람들의 의견을 바탕으로, 거스리는 시베리아, 알래스카 및 유콘 뿐만 아니라, 유럽과 러시아 서부가 하나의 거대한 초원이었다고 결론을 내리고 있다. 매머드 스텝지대는 북반구의 비빙하 지역의 대부분을 뒤덮었던 것으로 추정된다.

그러한 다양한 식물들이 있는 초원지대가 존재하기 위해서는, 토양은 매우 비옥했음이 틀림없다.[38] 시베리아 포유동물의 뼈에 피카(pica)라고 불리는 씹은 표시(chew marks)가 없는 것을 볼 때, 거기에 풍부한 양분을 가진 비옥한 토양이 존재했다고 추정할 수 있다.[39] 오늘날 많은 환경에서 흙이 충분한 양분을 함유하고 있지 않아, 작은 동물들은 그들의 음식에서 충분한 미네랄을 얻지 못하고 있다. 그래서 그들은 부족한 영양분을 얻기 위해 죽은 동물의 뼈를 씹는다.

포유동물의 성장 패턴, 또한 비옥한 초지를 암시한다.[40] 당시의 대부분의 포유류들은 잘 성장한 자이언트들로 기술되어 왔다. 말, 털북숭이 코뿔소, 털북숭이 매머드는 먼 남쪽의 동물보다 작았지만, 다른 모든 동물들은 오늘날의 동물보다 훨씬 컸다. 게다가, 많은 동물들이 가진 덥수룩한 목 털, 무거운 뿔, 긴 어금니, 거대한 뿔 등을 볼 때, 경쟁이 거의 없었고, 성장기가 길었고, 양질의 서식지가 있었던 것으로 추정된다.[41] 토양 영양분은 특히 동물의 크기와 사회공동체의 크기에 영향을 끼친다.[42] 베르그만(Bergmann)의 법칙은 기후가 더 추울수록 동물이 더 크다고 말하지만, 다른 사람들은 베르그의 법칙에 강력히 반대하며, 동물의 크기는 성장기 동안의 먹이의 질에 비례한다고 주장한다.[43] 거스리는 알래스카의 돌산양(dall sheep, 북미 북서부 산악지방의 털이 횐 야생 양)에 대한 실험을 통해, 동물의 크기와 먹이와의 연관성을 보여주었다: 먹이가 많을수록 더 크게 자랐다.[44]

그림 2.4. 사이가산양(saiga antelope)의 분포: 현재(실선), 역사적(점선), 빙하기 동안(점).

이렇게 다양한 초본 식물을 유지하려면, 따뜻한 토양과 봄의 빠른 성장으로 길게 자라나는 계절이 필요하다.[45] 이러한 기후는 6월 중순부터 7월 초순까지 북부 시베리아에서 녹색의 새싹조차 찾을 수 없는 현재의 환경과는 크게 다르다.[46] 스텝기후는 초원 유지에 필요한 기후의 일종인 비가 많은 봄, 건조한 늦여름과 초가을을 가지고 있다. 결과적으로, 매머드 시대의 시베리아에도 이와 비슷한 강수량 패턴을 예상하는 것이 합리적이다.

초지 생물량(grass biomass)의 90%는 지표 아래의 뿌리에 있다. 눈이 녹고 토양이 따뜻해질 때까지, 식물은 신선한 싹을 발아시킬 수 없다. 스텝 환경은 토양 수분 함량이 적고, 겨울 강설량이 적은 특징을 갖고 있다.[47] 이것은 겨울에 강설량이 적었을 뿐만 아니라, 일찍 녹았음을 의미한다. 온화하고 비교적 건조한 겨울은 봄을 재촉한다.

사이가영양, 큰뿔양, 돌산양, 늑대와 같이, 많은 눈을 견딜 수 없는 여러 동물들의 존재는 겨울 강설량이 적었음을 추정하게 한다.[48] 들소는 머리와 뿔로 눈을 긁어내는데 아주 효율적이지만, 눈이 60cm를 넘으면 음식을 충분히 얻는데 어려움을 겪는다. 영구동토층에서 많은 들소(bison) 유해들이 발견되는 중앙 알래스카 지역에는 눈이 보통 90cm 이상 쌓인다. 들소는 바람이 부는 일부 작은 지역을 제외하고는 알래스카 중부에 살 수 없다.[49]

요약하면, 시베리아 동물들의 생태학은 비옥한 토양을 가진 훨씬 더 다양한 식물들이 있었음을 추정하게 한다. 또한 이것은 적은 강설량과 긴 성장 시기를 가진 비교적 온화한 겨울을 의미한다. 이러한 상황들은 오늘날의 환경과 기후와는 매우 현저하게 달랐으며, 이것은 동일과정설에 기초한 빙하기 기후에 대한 컴퓨터 시뮬레이션에서는 언급되지 않고 있다.



참고문헌

1. Stuart, A.J., Mammalian extinctions in the Late Pleistocene of northern Eurasia and North America, Review of Biology 66:508, 1991.
2. Knystautas, A., The natural history of the USSR, McGraw-Hill, New York, p. 27, 1987.
3. Vereshchagin, N.K., and G.F. Baryshnikov, Quaternary mammalian extinctions in Northern Eurasia; in: Quaternary extinctions: A prehistoric revolution, P.S. Martin and R.G. Klein (Eds.), University of Arizona Press, Tucson, AZ, p. 492, 1984.
4. Digby, B., The mammoth and mammoth-hunting in north-east Siberia, H.F. & G. Witherby, London, p. 195, 1926.
5. Soffer, O., The upper paleolithic of the Central Russian Plain, Academic Press, New York, 1985.
6. Guthrie, R.D., Frozen fauna of the mammoth steppe — The story of Blue Babe, University of Chicago Press, Chicago, IL, p. 246, 1990.
7. Howorth, H.H., The Mammoth and the flood — An attempt to confront the theory of uniformity with the facts of recent geology, Sampson Low, Marston, Searle, & Rivington, London, reproduced by The Sourcebook Project, Glen Arm, Maryland, p. 62–63, 1887.
8. Haynes, G., Mammoths, mastodonts, and elephants, Cambridge University Press, Cambridge, NY, p. 97, 1991.
9. Haynes, G., The mountains that fell down: Life and death of heartland mammoths; in: Megafauna and man— Discovery of America’s heartland, L. Agenbroad, J.I. Mead, and L.W. Nelson (Eds.), The Mammoth Site of Hot Springs, South Dakota, Inc., Hot Springs, SD, scientific papers, vol. 1, p. 25–26, 1990.
10. Digby, Mammoth and mammoth-hunting, p. 15–16. Vereshchagin and Baryshnikov, Quaternary mammalian extinctions, p. 492.
11. Pfizenmayer, E.W., Siberian man and mammoth, Blackie & Sons, London, 1939.
12. Tolmachoff, I.P., The carcasses of the mammoth and rhinoceros found in the frozen ground of Siberia, Transactions of the American Philosophical Society 23:57, 1929.
13. Farrand, W.R., Frozen mammoths and modern geology, Science 133:734, 1961.
14. Vereshchagin, N.K., The mammoth 'cemeteries” of north-east Siberia, Polar Record 17(106):12, 1974.
15. Guthrie, R.D., Mammals of the mammoth steppe as paleoenvironmental indicators; in: Paleoecology of Beringia, D.M. Hopkins, J.V. Matthews Jr., C.E. Schweger, and S.B. Young (Eds.), Academic Press, New York, p. 310, 1982.
16. Ibid., p. 320.
17. Farrand, W.R., Frozen mammoths, Science 137:451, 1962.
18. Chapin, III, F.S., G.R. Shaver, A.E. Giblin, K.J. Nadelhoffer, and J.A. Laundre, Responses of Arctic tundra to experimental and observed changes in climate, Ecology 76(3):694, 1995.
19. Sher, A.V., Late-Quaternary extinction of large mammals in northern Eurasia: A new look at the Siberian contribution; in: Past and future rapid environmental changes: The spatial and evolutionary responses of terrestrial biota, B. Huntley, W. Cramer, A.V. Morgan, H.C. Prentice, and J.R.M. Allen (Eds.), Springer, New York,
p. 322, 1997.
20. Guthrie, R.D., and M.L. Guthrie, On the mammoth’s dusty trail, Natural History 99(7):40, 1990.
21. Hopkins, D.M., J.V. Matthews Jr., C.E. Schweger, and S.B. Young (Eds.), Paleoecology of Beringia, Academic Press, New York, 1982.
22. Vereshchagin, N.K., and G.F. Baryshnikov, Paleoecology of the mammoth fauna in the Eurasian Arctic; in: Paleoecology of Beringia, D.M. Hopkins, J.V. Matthews Jr., C.E. Schweger, and S.B. Young (Eds.), Academic Press, New York, p. 269, 1982.
23. Webb, S.D., A brief history of new world Proboscidea with emphasis on their adaptations and interactions with man; in: Proboscidean and paleoindian interactions, J.W. Fox, C.B. Smith, and K.T. Wilkins (Eds.), Baylor University Press, Waco, TX, p. 27, 1992.
24. Digby, Mammoth and mammoth-hunting, p. 52. Vereshchagin and Baryshnikov, Quaternary mammalian extinctions, p. 490.
25. Olivier, R.C.D., Ecology and behavior of living elephants: Bases for assumptions concerning the extinct woolly mammoths; in: Paleoecology of Beringia, D.M. Hopkins, J.V. Matthews Jr., C.E. Schweger, and S.B. Young (Eds.), Academic Press, New York, p. 303, 1982.
26. Arkhipov, S.A., Environment and climate of Sartan maximum and late glacial in Siberia; in: Late glacial and postglacial environmental changes — Quaternary, Carboniferous-Permian, and Proterozoic, I.P. Martini (Ed.), Oxford University Press, New York, p. 54, 1997.
27. Manabe, S., and A.J. Broccoli, The influence of continental ice sheets on the climate of an ice age, Journal of Geophysical Research 90(C2):2167–2190, 1985.
28. Dong, B., and P.J. Valdes, Sensitivity studies of Northern Hemisphere glaciation using an atmospheric general circulation model, Journal of Climate 8:2471–2496, 1995.
29. Phillips, P.J., and I.M. Held, The response to orbital perturbations in an atmospheric model coupled to a slab ocean, Journal of Climate 7:780, 1994.
30. Schweger, C.E., Primary production and the Pleistocene ungulates — The productivity paradox; in: Paleoecology of Beringia, D.M. Hopkins, J.V. Matthews Jr., C.E. Schweger, and S.B. Young (Eds.), Academic Press, New York, p. 219, 1982.
31. Guthrie, Mammals, p. 313. Bocherens, H., G. Pacaud, P.A. Lazarev, and A. Mariotti, Stable isotope abundances (13C, 15N) in collagen and soft tissues from Pleistocene mammals from Yakutia: Implications for the palaeobiology of the mammoth steppe, Palaeogeography, Palaeoclimatology, Palaeoecology 126:31, 1996.
32. Guthrie, Mammals, p. 307–326. Guthrie, Frozen fauna. Haynes, Mammoths, mastodonts, and elephants, p.59.
33. Guthrie, Frozen fauna, p. 248–249. Pielou, E.C., After the Ice Age — The return of life to glaciated North America, University of Chicago Press, Chicago, IL, p. 151, 1991.
34. Guthrie, Mammals, p. 311.
35. Guthrie, Mammals, p. 315.
36. Wright Jr., H.E., and C.W. Barnosky, Introduction to the English edition; in: Late Quaternary environments of the Soviet Union, A.A. Velichko (Ed.), University of Minnesota Press, Minneapolis, MN, p. xiii–xxii, 1984. Guthrie, R.D., Mosaics, allelochemics and nutrients — An ecological theory of late Pleistocene megafaunal extinctions; in: Quaternary extinctions: A prehistoric revolution, P.S. Martin and R.G. Klein (Eds.), University of Arizona Press, Tuscon, AZ, p. 259–297, 1984.
37. Tolmachoff, Carcasses, p. 47. Kaplina, T.N., and A.V. Lozhkin, Age and history of accumulation of the 'ice complex” of the maritime lowlands of Yakutia; in: Late Quaternary environments of the Soviet Union, A.A. Velichko (Ed.), University of Minnesota Press, Minneapolis, MN, p. 147, 1984. Anderson, P.M., Late Quaternary vegetational change in the Kotzebue Sound area, Northwestern Alaska, Quaternary Research 24:307–321, 1985. Sher, Late-Quaternary extinction, p. 322.
38. Guthrie, Mosaics, allelochemics and nutrients, p. 267.
39. Guthrie, Frozen fauna, p. 215–219.
40. Guthrie, Mammals, p. 307–326.
41. Guthrie, Mammals, p. 309.
42. Guthrie, Mosaics, allelochemics and nutrients.
43. Geist, V., Bergmann’s rule is invalid, Canadian Journal of Zoology 65:1035–1038, 1987. Guthrie, Mosaics, allelochemics and nutrients, p. 269, 271.
44. Guthrie, Mosaics, allelochemics and nutrients, p. 271.
45. Guthrie, Mammals, p. 322–324.
46. Howorth, H.H., The mammoths in Siberia, Geological Magazine 7:553, 1880.
47. Berman, D., S. Armbruster, A. Alfimov, and M. Edwards, Subarctic steppe communities in Beringia; in: Bridges of the science between North America and the Russian Far East, 45th Arctic science conference, section 2 — Beringia revisited: Recent discoveries and interpretations, p. 10, 1994.
48. Guthrie, Frozen fauna, p. 201.
49. Guthrie, Frozen fauna.


*Michael Oard의 책 'Frozen in Time” 원문.

1. Frozen mammoth carcasses in Siberia
http://www.answersingenesis.org/home/area/fit/chapter1.asp
2. Why live in Siberia?
http://www.answersingenesis.org/home/area/fit/chapter2.asp
3. The mystery of the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter3.asp
4. A mammoth number of mammoth hypotheses
http://www.answersingenesis.org/home/area/fit/chapter4.asp
5. The extinction wars
http://www.answersingenesis.org/home/area/fit/chapter5.asp
6. The multiplication of ice age theories
http://www.answersingenesis.org/home/area/fit/chapter6.asp
7. The Genesis flood caused the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter7.asp
8. The snowblitz
http://www.answersingenesis.org/home/area/fit/chapter8.asp
9. The peak of the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter9.asp
10. Catastrophic melting
http://www.answersingenesis.org/home/area/fit/chapter10.asp
11. Only one Ice Age
http://www.answersingenesis.org/home/area/fit/chapter11.asp
12. Do ice cores show many tens of thousands of years?
http://www.answersingenesis.org/home/area/fit/chapter12.asp
13. Where was man during the Ice Age?
http://www.answersingenesis.org/home/area/fit/chapter13.asp


번역 - 강기태

링크 - http://www.answersingenesis.org/home/area/fit/chapter2.asp

출처 - AiG

미디어위원회
2017-06-20

빙하기 탐구 - 멈춰버린 시간. 1장 

: 시베리아에 얼어붙은 매머드 사체들 

(Frozen in Time, Chapter 1. Frozen mammoth carcasses in Siberia)

by Michael J. Oard, Ph.D.


      시베리아에서 발견된 냉동 매머드 사체는 수세기 동안 우리의 상상력을 자극해 왔다. 매머드의 사체에는 때로 피부, 머리카락, 심장을 포함하는 내장기관들이 남아있었다.[1]

이러한 발견에 대한 보고들은 이유는 다르지만 성인과 아이들에게 모두 흥미롭게 다가온다. 북극해 연안에 있는 뉴시베리안 제도(New Siberian Islands)의 한 섬은 대부분 매머드 뼈로 덮여 있는 것으로 보고되었다. 수년 동안 수천 톤의 아이보리 상아가 시베리아에서 발굴되고 수출되면서, 수익성 있는 상아 무역이 발달했다. 과학자들은 왜 이 동물들이 시베리아에 살았는지, 그리고 그들이 어떻게 죽었는지, 이해하려고 애쓴다. 아이들은 먹을 수 있을 만큼 신선한 고기가 붙어있는 상태로 냉동된 동물 사체 이야기를 좋아한다.

그림 1.1

이러한 이상한 발견으로 많은 질문들이 생겨난다. 털북숭이 매머드, 들소, 털북숭이 코뿔소, 말은 왜 시베리아에 이끌렸을까? 오늘날 시베리아는 황량하고, 눈보라가 휘몰아치는, 황량한 지역이다. 동물들은 극도로 추운 겨울을 어떻게 견뎌낼 수 있었던 것일까? 그들은 무엇을 먹었을까? 짐승이 눈과 얼음 속에 고립되었을 때, 그들이 필요로 하는 엄청난 양의 물을 어디에서 구할 수 있었을까? 겨울마다 강조차도 몇 피트의 얼음으로 덮여 있다. 모든 것을 혼란스럽게 만드는 것은 매머드와 그 동료들이 어떻게 한꺼번에 죽었으며, 어떻게 영구동토층에 갇혀 있을 수 있었을까 하는 것이다.

시간이 지남에 따라, 사망 당시의 환경에 대한 다양한 단서들이 발견되고 연구되었다. 과학자들은 일부 사체의 위장 내에 부분적으로 보존된 식물들을 발견했고, 털북숭이 매머드의 마지막 식사를 확인할 수 있었다. 하나의 미스터리를 풀고 나면, 다른 미스터리를 만나게 된다. 과학자들은 동물들이 얼어붙는 동안, 위장 내용물이 어떻게 해서 반만 부패된 채 남아있는지 궁금해 했다. 코끼리처럼 거대한 동물이 동결되는 데는 오랜 시간이 걸리기 때문에, 식물이 부분적으로 보존되어 있었다는 것은 빠른 동결을 의미하는 것이다. Birds Eye Frozen Foods Company는 계산을 해본 결과 –150℉(–100℃)라는 엄청나게 낮은 온도를 산출해냈다. 다시 한 번 과학자들은 의아해했다. 급속 냉동 이전의 지구 온도는 명백히 온난했을 텐데, 어떻게 그러한 낮은 온도에 도달할 수 있었을까?

많은 이론들이 가정되었다. 가장 인기 있는 이론 중 하나는 그 털북숭이 매머드가 풀과 목초지가 있는 지역에서 평화롭게 살고 있다가, 갑자기 북극해에서 날아오는 거대하고 차가운 폭풍에 의해 수백만 마리가 즉시 얼어붙었다는 것이다. 이러한 종류의 빠른 동결은 관찰된 적이 없으므로, 일부 특별하고 상상력이 풍부한 아이디어가 제안되었다. 언제나 한 가지 질문은 다른 질문들을 낳는 것과 같다. 이 이야기는 오토 헤르츠(Otto Herz)와 파이젠메이어(E. Pfizenmayer)가 이끌었던 영웅적인 탐사팀에 의해 발굴되어 러시아 상트페테르부르크로 옮겨진 베레소브카(Beresovka) 매머드를 기반으로 한다. 이 탐사는 1901년 늦은 봄에 시작하여 1902년 2월 18일에 끝났다. 시베리아의 추운 가을과 겨울기간 동안 매머드 사체를 운반하기 위해 썰매로 6,000km를 여행해야 했다.[2]

우리는 이 책에서 이 질문들을 탐구하고, 빙하기를 바탕으로 또 다른 이론을 제시할 것이다. 이 빙하기는 시베리아의 털북숭이 매머드와 다른 동물들의 이주와 멸종에 관한 질문에 답을 준다. 빙하기의 원인은 여전히 주류 과학자들에게는 수수께끼로 남아 있다. 그래서 빙하기에 대한 이론을 성경에 기록된 창세기 홍수에 기초하여 제시할 것이다.

그림 1.2 베레소브카(Beresovka) 매머드


털북숭이 매머드는 정확하게 어떤 동물인가?

털북숭이 매머드(Mammuthus primigenius)는 본질적으로 커다란 어깨 혹, 경사진 등, 작은 귀와 꼬리, 독특한 이빨, 끝부분에서 두 개의 손가락 같은 돌출부를 갖는 작은 코 등을 갖고 있는, '털 많은 코끼리(hairy elephant)”이다. 그들은 보통 3.3m 길이의 나선형 커브의 어금니(tusks)를 갖고 있다. 세계 기록의 어금니는 길이가 4.11m이고, 아마도 무게는 약 100kg이다.[3] 털북숭이 매머드는 세 가지 유형의 털로 덮여있었다: (1)결이 거칠고 길이가 90cm가 넘는 바깥쪽 보호털, (2)다소 얇고 길이가 약 25~30cm인 솜털, (3)솜털 아래에 길이가 약 2~8cm인 두꺼운 모직 층.[4] 다 자란 매머드의 이빨은 다리 길이 보다 길며, 일련의 평행한 에나멜 능선이 있다. 아마도 긴 털, 작은 귀, 작은 꼬리는 추운 기후에 적응한 결과일 것이다.

그림 1.3 털북숭이 매머드의 두개골, 턱, 그리고 어금니.

털북숭이 매머드(woolly mammoth)는 매머드 속(genus Mammuthus)의 두 가지 일반적인 유형의 매머드 중 하나이다. 콜럼비아 매머드(Columbian mammoth)는 두 번째 유형이다. 콜럼비아 매머드는 섰을 때, 약 4m 높이로, 약 3m 정도인 털북숭이 매머드에 비해 더 컸다.[5] 둘 다 생물학적 분류 체계에서 장비목(order Proboscidea)에 속해 있으며, 현대의 코끼리와 멸종된 코끼리가 여기에 포함된다. 코끼리와 매머드의 분류에 관해서는 많은 논란이 있다(부록 1 참조).

털북숭이 매머드는 콜럼비아 매머드보다 두꺼운 털을 갖는 등, 추운 날씨에 대해 몇 가지 독특한 적응 특성을 갖고 있다. 털북숭이 매머드는 추운 날씨 때문에 이러한 적응이 발달되었는가, 아니면 털북숭이 매머드가 항상 그런 특징을 갖고 있어서 그들에게는 북쪽으로 이주하는 것이 유리한 것이었을까? 나는 앞의 설명을 선호하지만, 확실하게 알 수 있는 방법은 없다. 추위에의 적응을 선호하는 이유는 그러한 적응이 오늘날 많은 포유류와 사람들의 유전자와 염색체에 내장되어 있기 때문이다. 우리가 겨울 온도에 적응하는 것은 피가 진해지는 것과 같은 우리 몸의 생리적 변화를 통한 것이다. 이러한 변화는 진화와는 아무런 관련 없이, 생물체에 내장되어 있는 것이다. 다른 유전자를 조절하는 특정 유전자는 환경 신호에 의해 발동된다. 그래서, 나는 그것이 털북숭이 매머드의 경우에도 동일하다고 믿는다. 추위가 휴면상태의 특정한 유전자를 발동시켜, 긴 털 및 추위에 적응된 형질을 만들어냈다.


시베리아에 수백만 마리의 매머드가 묻혀 있는가?

많은 사람들은 시베리아 영구동토층에 수백만 마리의 매머드들이 매장되어 있다고 주장해 왔다. 이것이 사실일 수 있을까, 아니면 큰 과장일까? 패런드(Farrand)는 죽어서 매장되어 있는 매머드들의 추정치를 줄여서 약 5만 마리로 보았다.[6] 시베리아와 같이 광활하고 거주 밀도가 낮은 영토에서 살고 있는 동물들의 수를 추정하는 것은 매우 어려운데, 더군다나 죽어서 묻혀 있을만한 매머드의 숫자는 말할 것도 없다. 영구동토층에 얼마나 많은 사체가 남아있을 것인지 추정하는 것은 더 복잡한 문제이다.[7] 단지 매몰된 매머드가 얼마나 많은지가 시베리아 환경과 멸종에 관한 우리의 이론에 영향을 미친다.

그림1.4 북극해의 시베리아 및 근해에 대한 지도. 해발 고도가 표시되어 있다. 북서쪽은 일반적으로 평평한 평원인 반면 남쪽과 동쪽에는 산맥이 있음을 주목하라.

매머드 뼈, 엄니, 사체의 수에 대해 언급할 때 연구자들은 흔히 발견된 뼈의 숫자가 많다는 것을 강조한다. 예를 들어, 발렌티나(Valentina Ukraintseva)는 수많은 잔존물을 바탕으로 시베리아의 매머드 개체가 정말 많았다고 말한다.[8] 페어뱅크 알래스카 대학의 데일 구스리(Dale Guthrie)는 수십만 마리의 포유류 뼈들이 알래스카 내륙의 강들을 따라 집중되어 있다고 추정했다.[9] 물론 한 동물도 많은 뼈를 가지고 있지만, 구스리의 추정치에는 아직 계곡의 퇴적물에서 씻겨나오지 않은 뼈나, 고지대에 묻혀있는 뼈들은 포함되어 있지 않다. 이레나 드브로보(Irena Dubrovo)는 시베리아에 엄청난 수의 매머드들이 남아 있다고 말한다.[10] 탐험가들은 항상 그 잔존물이 풍부하다고 보고했다.[11]

시베리아의 털복숭이 매머드에 대한 최고 전문가는 거의 반세기 동안 매머드 동물상을 연구해 온 니콜라이 베레시차긴(Nikolai Vereshchagin)이다. 그는 1940년 이래로 유라시아의 영구동토층에서 발견된 여러 종류의 동물들에서 대략 1백만 개의 뼈 조각들을 식별하였다.[12] 그는 시베리아에 수많은 잔해들이 있는 것에 놀랍다고 말했다.[13] 시베리아에는 수십만 마리의 대형 포유류들과[14], 수백만 개의 뼈들이 묻혀있다.[15]

북극 해안의 침식은 해마다 1~7m로 다양하게 진행되어[16], 바다 절벽에서 엄청난 수의 털복숭이 매머드 뼈들이 쏟아져 내린다. Smithsonian 지에 실린 한 보고서에서, 스튜워트(Stewart)는 야나 강(Yana rivers)과 콜리마 강(Kolyma rivers) 사이의 북극 해안을 따라 있는 한 지역에 대해, 베레시차긴이 평가했던 부분을 언급하고 있었다[17] :

이러한 원인을 통해 1660년에서 1915년 사이에 시베리아에서 거의 50,000개의 매머드 어금니가 발견되어, 엄청난 양의 상아 거래가 이루어졌다고 한다. 그러나 이것은 아직도 묻혀있는 양에 비하면 비교가 되지 않는다. 베레시차긴에 따르면 북극 해안의 심한 침식은 해마다 수천 개의 어금니와 매몰된 수만 개의 뼈들을 매년 바다로 쏟아내고 있고, 야나 강과 콜리마 강 사이의 960km 연안에는 얕은 곳을 따라 50만 톤 이상의 매머드 어금니가 놓여있고, 연안 평지의 호수 바닥에도 또 다른 15만 톤이 놓여있다.

각 어금니의 무게를 45kg 정도로 계산하면, 합리적인 추산을 할 수 있는데[18], 그러면 베레시차긴이 언급한 어금니의 양은 500만 마리의 매머드가 이 지역에 묻혀 있음을 나타낸다. 그가 과장했던 것일까? 그가 과장을 했다면 그렇게까지 많지는 않을 것이다. 이 지역에는 비옥한 뉴시베리안 제도(New Siberian Islands, 노보시비르스크 제도, Novosibirskye Ostrova)가 근해에 있기 때문에 매머드 잔존물의 밀도가 가장 높을 수 있다. 베레시차긴이 추정했던 서쪽 지역을 포함하는, 랍테프 해(Laptev Sea) 연안 지역은 세계에서 가장 큰 매머드 묘지 중 하나로 여겨진다.[19]

그림 1.5 북부 중앙 시베리아와 뉴시베리안 제도(New Siberian Islands, Novosibirskye Ostrova).

털북숭이 매머드의 개체 수는 북 시베리아에 더 많이 집중되어 있다.[20, 21] 매머드 잔존물은 본토에서 북쪽으로 230km 떨어진 라호프 제도(Lyakhov Islands)와[22], 뉴시베리안 제도에 놀라울 정도로 풍부하다.[23, 24] 뉴시베리안 제도 중 한 섬은 완전히 뼈로 이루어져 있다는 초기 보고서는 지나친 과장이다. 이 섬들에서 발견된 많은 뼈들은 시베리아 및 그 섬들과 함께 인접한 대륙붕이 한때 털북숭이 매머드와 다른 동물들로 가득한 광대한 평원이었음을 나타낸다. 베레시차긴과 쿠즈미나(Kuz'mina)는 이렇게 말한다[25] :

(북극 대륙붕을 따라) 랍테프 해(Laptev Sea)와 동시베리아 해(East Siberian Seas)의 대륙붕에 있는 어떤 지역은 말, 순록(reindeer), 들소(bison), 사향소(musk ox), 조류에 밀려온 매머드 등의 뼈로 뒤덮여있다. 때때로 늑대(wolf), 갈색 곰(brown bear), 동굴 사자(cave lion), (드물게) 털북숭이 코뿔소(woolly rhinoceros), 큰 사슴(moose), 사이가산양(saiga antelope)의 뼈도 발견된다.

시베리아뿐만 아니라, 북반구의 다른 곳에서도 털북숭이 매머드와 함께 다양한 종류의 동물들을 발견할 수 있다. 이 빙하기 환경은 거대한 초원인 ‘매머드 스텝지대(mammoth steppe)’라고 불려왔다.

많은 보고서에 기초하여, 시베리아 영구동토층에 수백만 마리의 털북숭이 매머드들이 있었다고 추정하는 것이 옳았다. 레이스트와 바흔(Leiste and Bahn)은 일부 과학자들이 시베리아의 깊은 얼음 속에 1천만 마리의 매머드들이 있을 것으로 추정하는 것에 주목했다.[26] 이것은 그들이 수수께끼 같은 추운 지역에서, 어떻게 충분한 양의 음식과 물을 찾을 수 있었는지에 대한 의문을 제기한다.

그림 1.6 북반구에서 털북숭이 매머드 사체의 분포(Daniel Lewis가 유라시아를 함께 다시 그림).[27]

털북숭이의 매머드 화석은 시베리아에서 흔히 발견될 뿐만 아니라, 또한 북반구의 중위도 및 고위도의 굳지 않은 퇴적물에서도 발견된다. 때로는 그들 잔해들은 일부 지역의 대륙붕에서 준설 시에 파내지기도 했다. 매머드들은 빙하기와 관련되어 있지만, 이전에 빙하가 있던 지역에서는 거의 발견되지 않는다. 매머드들은 주로 시베리아의 비빙하 지역(non-glaciated areas)에서 발견된다. 그들은 시베리아에서 베링 육교(Bering Land Bridge)를 경유하여, 알래스카와 유콘(Yukon)의 빙하가 없는 지역으로 퍼져나갔다. 이 육지 다리는 빙하기 동안 거의 또는 전부 말라 있었다. 유콘에서 매머드들은 얼음이 없는 지역을 통해서, 서부 앨버타를 거쳐 미국 북부 전역을 통하여 남쪽으로 퍼져나갔다. 콜롬비아 매머드는 더 먼 남쪽, 즉 미국 남부, 멕시코, 중미에서도 발견된다.[28, 29] 전 세계에서 화석화된 털북숭이 매머드는 아마도 1천5백만 마리를 넘을 것으로 추정된다.


사체에 대한 수수께끼

냉동 매머드 사체의 존재뿐만 아니라, 사체의 몇 가지 측면들은 매우 불가사의하다.

몇 개의 골격뿐만 아니라, 많은 사체들이 그냥 서있는 자세로 발견되었다. 동물이 늪지에서 가라앉은 것처럼 보이지만, 일반적으로 시베리아의 늪지는 그런 커다란 크기의 동물이 묻힐 정도로 깊지 않다. 또한, 사체를 둘러싼 퇴적물의 대부분은 늪지 퇴적물이 아니다.[30] 헨리 호워스(Henry Howorth)는 다음과 같이 말했다[31] :

매머드의 몸과 뼈대는, 그들이 선 자세로 마치 연약한 땅 속에 가라앉은 것처럼, 때때로 똑바로 선 채로 발견되었다는 브랜트(Brandt)의 보고와 같은 결론을 내릴 수 있게 하는 것이었다. 알란스카(Alansk) 근처에서 싸리체프(Ssarytschef)가 발견했던 표본이 그 경우였는데... 판더스(Panders)가 브랜트에게 보고했던 것처럼, 페테르부르크 근처에서 약 1827개의 뼈들이 발견됐는데 그 중 한 골격은 서있는 상태였으며, 세 번째는 오비 반도(peninsula of the Obi)의 예람베이(Yerambei) 입구에서 53km 정도 떨어진 곳에서 발견된 것이고, 네 번째는 모스크바의 정부에 의해서 발견된 것으로, 이들 모두는 브랜트에 의해서 논의되었다...

베레소브카 매머드는 발견되기 전에 아마도 얼음 블록이 경사면 아래로 미끄러졌던 것으로 보이지만, 앉은 자세로 발견되었다.[32] 이 매머드의 독특한 자세는 미끄러짐이 매머드가 죽을 때의 원래 자세를 변경시키지 못했음을 의미한다. 심지어 나무들조차도 언덕을 미끄러졌던 곳에서 여전히 똑바로 서 있었다.[33]

러시아 연구원 톨마초프(Tolmachoff)는 시베리아에서 몇 개의 똑바로 서 있는 매머드 사체(upright mammoth carcasses)를 보고했다. 사체 중 하나가 1839년에 인디기르카 강(Indigirka River)의 지류인 샹인 강(Shangin River)에서 똑 바로 서 있는 자세로 절벽에서 돌출된 채 발견되었다.[34] 뉴시베리안 제도의 벼랑에서 직립한 또 다른 매머드가 발견되었다.[35] 톨마초프 자신은 북극해 연안에서 매머드 뼈대의 일부를 발견했다.[36]  ”... 다소 똑바로 서있는 자세로 얼어붙은 절벽에서 돌출되어 있었다.” 그는 브랜트가 이러한 똑바로 서있는 매머드에 대해 감명을 받았는지에 대한, 호워스의 말과 비슷한 말로 이야기했다 :

브랜트는 매머드의 잔해가, 사체 및 뼈대와 마찬가지로, 마치 동물들이 수렁에 빠졌던 것처럼, 똑바로 서서 죽었다는 것을 나타내는 자세로 발견되었다는 사실에 매우 깊은 인상을 받았다.[37]

이상하게도 베레소브카 매머드를 포함하여 3마리의 털북숭이 매머드와 2마리의 털북숭이 코뿔소를 조사한 과학자들은 그들 모두가 질식(suffocation)으로 사망한 사실을 발견했다.[38] 살아있는 동물이 질식해서 죽기 위해서는, 그것이 빨리 파묻혔거나 익사해야 했다.

몇몇 사체들은 부러진 뼈를 갖고 있었다. 셀레리칸(Selerikan)에서 발견된 말의 윗 앞다리 뼈와 갈비뼈 중 일부가 부러져 있었다.[39] 그것의 머리는 없어졌다. 베레소브카 매머드의 골반, 갈비뼈, 오른쪽 앞다리가 부러져 있었다.[40] 매머드의 뼈를 부러뜨리려면, 상당한 힘이 필요하다. 부러진 뼈들로부터 추론됐던 이야기들은, 베레소브카 매머드가 잔디와 목초지에서 풀을 뜯고 있다가, 사고로 영구동토층에 있던 크레바스에 떨어져 죽었다는 것이다. 그런 다음 그것은 빠르게 덮여졌고, 질식해죽었을 것이라는 것이다.[41] 베레소브카 매머드의 입 속의 이빨과 혀 사이에서 식물 잎과 풀 뿐만 아니라, 미나리아재비(buttercups)가 발견되었다.[42]

직립 매장에 대해 설명하는 것도 어렵지만, 이들 많은 매머드와 다른 동물들이 어떻게 해서 영구동토층 내에 죽어있는지에 대한 질문은 더욱 더 어렵다. 사체와 뼈들 모두가 부패하기 전에 영구동토층의 여름철 용융층 아래에 빨리 매몰되어야만 했다. 호워스는 그 문제를 이렇게 설명한다[43] :

우리가 알고 있는 물리적인 과정으로는 어떻게 그런 부드러운 피부 조직이 분해되지 않고 부싯돌처럼 단단하게 동결된 채로 땅속에 묻혀 있을 수 있는지 이해할 수 없다. 우리가 커다란 코끼리의 몸 전체를 미세한 관절들을 분리시키지 않고, 단단한 얼음이나 꽁꽁 언 자갈과 진흙 속으, 마치 젤리 안으로 넣는 것처럼, 밀어 넣는 것은 불가능하다. 그런 과정은 땅을 완전히 교란시켜야만 가능할 것이다.

이것은 단지 호워스 만의 의견이 아니다. 켄부시(Quackenbush)는 그의 주장을 이렇게 강조하고 있었다[44] :

그러나 만약 사체가 공기로부터 차단될 때에만 보존된다면, 사체 전체가 발견되었다는 것은 그것이 신속하고 완전하게 덮였다는 것이 분명하며, 어떤 종류의 연약하거나 습한 땅 속으로 그들이 가라앉았다는 것 말고는 달리 일어날 수 있는 방법이 없다.

왜 털북숭이 매머드가 시베리아에 살았고, 어떻게 죽었는지 설명하는 그럴듯한 이론들은 표 1.1에 있는 것과 같은, 사체에 대한 이러한 수수께끼들을 설명할 수 있어야만 한다.

표 1.1. 사체의 퍼즐

1. 일부 사체와 골격은 일반적으로 똑바로 선 자세로 발견된다.

2. 3마리의 털북숭이 매머드와 2마리의 털북숭이 코뿔소는 질식해서 숨졌다.

3. 수백만 마리의 동물이 암석처럼 단단한 영구동토층에 매몰되어 있다.

4. 포유류의 일부는 뼈가 부러져있다.



참고문헌

1. Agenbroad, L.D. and L. Nelson, Mammoths: Ice Age giants, Lerner Publications Company, Minneapolis, MN, p. 8, 2002.See all footnotes
2. Pfizenmayer, E.W., Siberian man and mammoth, Blackie & Sons, London, 1939.S
3. Agenbroad & Nelson, Mammoths: Ice Age giants, p. 33.
4. Agenbroad & Nelson, Mammoths: Ice Age giants, p. 42–43.
5. Agenbroad & Nelson, Mammoths: Ice Age giants, p. 40.
6. Farrand, W.R., Frozen mammoths and modern geology, Science 133:729–735, 1961.
7. Ukraintseva, V.V., Vegetation cover and environment of the 'Mammoth Epoch” in Siberia, Mammoth Site of Hot Springs, South Dakota, Inc., Hot Springs, SD, p. 234, 1993.
8. Ukraintseva, V.V., Vegetation cover and environment, p. 224.
9. Guthrie, R.D., Frozen fauna of the mammoth steppe — The story of Blue Babe, University of Chicago Press, Chicago, IL, p. 67, 1990.
10. Dubrovo, I., The Pleistocene elephants of Siberia; in: Megafauna and man — Discovery of America’s heartland, The Mammoth Site of Hot Springs, South Dakota, Inc., Hot Springs, SD, scientific papers, volume 1, p. 3, 1990.
11. Péwé, T.L., and D.M. Hopkins, Mammal remains of pre-Wisconsin age in Alaska; in: The Bering land bridge, D.M. Hopkins (Ed.), Stanford University Press, Stanford, CA, p. 266, 1967.
12. Vereshchagin, N.K., An experiment in the interpretation (visual assessment) of mammalian bones from sediments of the Quaternary Period; in: Late Quaternary environments and deep history: A tribute to Paul S. Martin, D.W. Steadman and J.I. Mead (Eds.), The Mammoth Site of Hot Springs, South Dakota, Inc., Hot Springs, SD, p. 61, 1995.
13. Vereshchagin, N.K., and G.F. Baryshnikov, Paleoecology of the mammoth fauna in the Eurasian Arctic; in: Paleoecology of Beringia, D.M. Hopkins, J.V. Matthews Jr., C.E. Schweger, and S.B. Young (Eds.), New York: Academic Press, p. 267, 1982.
14. Vereshchagin, N.K., The mammoth 'cemeteries” of north-east Siberia, Polar Record 17(106), p. 3, 1974.
15. Vereshchagin, N.K., Experiment in the interpretation, p. 62.
16. Thiede, J., H. Kassens, and L. Timokhov, Laptev Sea system discussed at Russian-German workshop, EOS 81(32):361, 366–367, 2000.
17. Stewart, J.M., Frozen mammoths from Siberia bring the ice ages to vivid life, Smithsonian 8, p. 68, 1977.
18. Agenbroad & Nelson, Mammoths: Ice Age giants, p. 33.
19. Thiede, Laptev Sea system, p. 367.
20. Howorth, H.H., The mammoths in Siberia, Geological Magazine 7:550–561, 1880.
21. Digby, B., The mammoth and mammoth-hunting in north-east Siberia, H.F. & G. Witherby, London, p. 14, 1926.
22. Baryshnikov, G., G. Haynes, and J. Klimowicz, Mammoths and the mammoth fauna: Introduction to the studies of an extinct ecosystem; in: Mammoths and the mammoth fauna: Studies of an extinct ecosystem, G. Haynes, J. Klimowicz, and J.W.F. Reumer (Eds.), Proceedings of the First International Mammoth Conference, Jaarbericht Van Het Natuurmuseum, Rotterdam, p. 5, 1999.
23. Howorth, H.H., The mammoths in Siberia, Geological Magazine 7:550–561, 1880.
24. Nordenskiöld, A.E., The voyage of the Vega round Asia and Europe, MacMillan and Co., London, p. 149, 155, 1883.
25. Vereshchagin, N.K., and I.Y. Kuz’mina, I, Late Pleistocene mammal fauna of Siberia; in: Late Quaternary environments of the Soviet Union, A.A. Velichko (Ed.), University of Minnesota Press, Minneapolis, MN, p.219, 1984.
26. Lister, A., and P. Bahn, Mammoths, Macmillan, New York, p. 115, 1994.
27. From Kahlke, R.D., The history of the origin, evolution and dispersal of the Late Pleistocene Mammuthus-Coelodonta faunal complex in Eurasia (large mammals), Mammoth Site of Hot Springs South Dakota, Inc.,Hot Springs, SD, 1999; figure 13.
28. Fagen, B.M., The great journey — The peopling of ancient America, Thames and Hudson, London, 1987.
29. Siebe, C., P. Schaaf, and J. Urrutia-Fucugauchi, Mammoth bones embedded in a late Pleistocene lahar from Popocatépetl volcano, near Tocuila, central Mexico, Geological Society of America Bulletin 111:1550–1562, 1999.
30. Howorth, H.H., The Mammoth and the flood — An attempt to confront the theory of uniformity with the facts of recent geology, Sampson Low, Marston, Searle, & Rivington, London (reproduced by The Sourcebook Project, Glen Arm, Maryland), p. 61, 185, 1887. Pfizenmayer,Siberian man and mammoth, p. 7.
31. Howorth, H.H., The mammoths in Siberia, Geological Magazine 7, p. 551–552, 1880.
32. Pfizenmayer, Siberian man and mammoth, p. 86.
33. Guthrie, Frozen fauna, p. 7.
34. Tolmachoff, I.P., The carcasses of the mammoth and rhinoceros found in the frozen ground of Siberia, Transactions of the American Philosophical Society 23, p. 26, 1929.
35. Tolmachoff, Carcasses of the mammoth, p. 32.
36. Tolmachoff, Carcasses of the mammoth, p. 36.
37. Tolmachoff, Carcasses of the mammoth, p. 56.
38. Digby, B., The mammoth and mammoth-hunting in north-east Siberia, H.F. & G. Witherby, London, p. 54, 1926. Tolmachoff,Carcassesofthemammoth. Farrand,W.R.,Frozenmammothsandmoderngeology,p.734.
39. Guthrie, R.D., Frozen fauna of the mammoth steppe — The story of Blue Babe, University of Chicago Press, Chicago, IL, p. 31, 1990.
40. Digby, B., The mammoth and mammoth-hunting in north-east Siberia, H.F. & G. Witherby, London, 1926. Pfizenmayer,E.W.,Siberian man and mammoth, Blackie & Sons, London, 1939.
41. Pfizenmayer, Siberian man and mammoth, p. 90.
42. Pfizenmayer, Siberian man and mammoth, p. 39. Guthrie,R.D.,Frozen fauna, p. 4.
43.Howorth, H.H., The Mammoth and the flood — An attempt to confront the theory of uniformity with the facts of recent geology, Sampson Low, Marston, Searle, & Rivington, London (reproduced by The Sourcebook Project, Glen Arm, Maryland), p. 95, 1887.
44. Quackenbush, L.S., Notes on Alaskan mammoth expedition of 1907 and 1908, Bulletin of the American Museum of Natural History 25:87–130, 1909.



번역 - 강기태

링크 - https://answersingenesis.org/extinct-animals/ice-age/frozen-mammoth-carcasses-in-siberia/

출처 - AiG

미디어위원회
2017-06-20

빙하기 탐구 - 멈춰버린 시간. 서론

 (Frozen in Time, Preface)

by Michael J. Oard, Ph.D.


      시베리아의 툰드라에서 얼어붙은 수백만 마리의 털북숭이 매머드(woolly mammoths)의 뼈, 엄니, 특히 사체는 수백 년 동안 아이들과 과학자들의 상상력을 자극해왔다. 왜 털북숭이 매머드와 많은 다른 포유동물들이 알래스카와 유콘 지역뿐만 아니라, 북부 시베리아에서 살기를 원했던 것일까? 그들은 눈 덮인 툰드라에서 무엇을 먹고 살았을까? 그들은 마실만한 충분한 물을 어디에서 찾을 수 있었을까? 매머드는 코끼리와 마찬가지로 매일 수 백 파운드의 음식과 수 갤런의 물을 필요로 한다. 그 미스터리가 그리 깊지 않다는 듯이, 그들은 한동안 잘 살았다가, 갑자기 수십 종의 다른 대형 포유동물 및 새와 함께 모든 대륙에서 멸종된 것으로 나타난다.

털북숭이 매머드의 사체를 조사해 보면, 그 미스터리가 증가한다. 일부 시체와 골격은 일반적으로 서있는 자세(standing position)로 발견되었다. 사체 안의 혈액 특성을 조사해보니까, 3마리의 털북숭이 매머드와 2마리의 코뿔소는 질식사 한 것으로 드러났다. 어떤 시체는 뼈가 부러져있었다. 왜 이렇게 되어야 했는가? 마지막으로, 수백만 마리의 털북숭이 매머드와 다른 포유동물들이 어떻게 해서 오늘날까지 바위처럼 단단한 영구동토층 안에 냉동상태로 남아있는지에 대해서는 영원한 수수께끼로 남아 있다.

매머드와 그 무리들이 빙하기에도 시베리아에서 살았었는데, 그때보다는 삶의 환경이 더 나아졌을 것으로 짐작되는 빙하기 말에 죽었다는 것은 참으로 이상한 일이다! 왜 그럴까?

빙하기 자체가 주요한 미스터리이다. 특별히, 그리 오래지 않은 과거에 있었던 빙하기를 촉발시킨 것은 무엇일까? 사실 그것은 지구상에서 있었던 마지막의 중요한 지질학적 사건이었지만, 과학자들은 그 원인을 거의 이해하지 못하고 있다. 또한 흥미로운 사실은, 대부분의 과학자들이 예상하듯이 가까운 미래에 또 다른 빙하기를 경험할 수 있을까?

그게 전부가 아니다. 현재 지구상에서 사막이나 반건조(semiarid) 지역인 곳이, 빙하기에는 거대한 호수와 강이었을 것이다. 또한 추운 기후를 선호하는 동물, 식물 및 기타 생물들이, 따뜻한 기후를 선호하는 생물들과 함께 살았던 것으로 나타난다. 이들은 부조화의 결합이라고 하며, 이에 대해 주류 과학자들은 아무런 설명도 하지 않는다.

가까운 과거에 왜 많은 미스터리들이 존재하는가? 주류 과학자들이 답을 위한 방향을 잘못 바라보고 있는 것은 아닐까? 과거에 대한 그들의 가정(assumptions)에 문제가 있는 것은 아닐까? 그들이 빙하기와 같은 가까운 과거의 주요한 지질학적 사건도 설명할 수 없다면, 왜 우리는 빙하기보다 오래된 사건들에 대한 설명으로 진화론/동일과정설 과학자들의 말을 신뢰해야 하는 것인가?

이 많은 질문들은 대기과학자인 나에게 많은 관심을 촉발시켰다. 나는 1960년대 이래로 기상학, 기후학 및 지구과학의 다른 분야들을 연구한 후, 창세기 대홍수에 근거하여 빙하기에 관한 이론을 개발했다.[1] 빙하기는 단 한번으로 빠르게 작동되었으며, 약 700년 동안 지속되었다. 이 단 한 번의 빙하기를 배경으로 하여, 털북숭이 매머드의 미스터리는 유용한 해답을 찾아낼 수 있다. 다른 말로 하면, 동일과정설 모델이라는 수억 수천만 년에 걸친, 느리고 점진적인 과정이라는 '안경”으로 이 세상을 바라보는 대신에, 대홍수라는 '안경”을 쓰고 과학의 자료들을 살펴보는 것이다. 성경적 관점은 지난 200년 이상 동안 과학자들을 괴롭혔던 이러한 미스터리를 푸는 열쇠라고 나는 믿고 있다!

나는 또한 가까운 과거에 대한 이러한 미스터리를 풀 수 있는 또 다른 열쇠는, 성경 창세기 1~11장의 짧은 시간 규모라는 것을 발견했다. 진화론적 과학자들은 한 번의 빙하기는 10만 년 정도가 걸렸으며, 지난 수백만 년 동안 주기적으로 30번의 빙하기가 반복되었다고 믿고 있다. 나는 이들 미스터리와 관련된 특정한 사건들을 조사해 본 결과, 빙하기가 단지 수백 년 동안만 일어났었다는 것을 발견했다. 시간은 부수적인 문제가 아니다. 성경의 짧은 시간 규모는 과거의 미스터리를 푸는데 결정적인 것이다.

이 책은 이러한 의문과 미스터리들을 탐구할 것이다. 우리는 먼저 털북숭이 매머드와 빙하기에 관한 많은 미스터리들을 논의할 것이다. 두 번째로, 우리는 이들 미스터리들을 설명하려고 시도했던 많은 이론과 개념들을 살펴볼 것이다. 그리고는 창세기 대홍수로 초래된 기후 변화로 인한 단 한 번의 빙하기(unique Ice Age)를 전개할 것이다. 넷째로, 매머드에 관련된 많은 문제들에 대한 합리적인 해결책을 제공할 수 있게 될 것이다.


1) Oard, M.J. 1990. An ice age caused by the Genesis flood. El Cajon, CA: Institute for Creation Research.


*빙하기에 관한 Michael Oard의 책 '멈춰버린 시간(Frozen in Time)” 원문.

1. Frozen mammoth carcasses in Siberia
http://www.answersingenesis.org/home/area/fit/chapter1.asp
2. Why live in Siberia?
http://www.answersingenesis.org/home/area/fit/chapter2.asp
3. The mystery of the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter3.asp
4. A mammoth number of mammoth hypotheses
http://www.answersingenesis.org/home/area/fit/chapter4.asp
5. The extinction wars
http://www.answersingenesis.org/home/area/fit/chapter5.asp
6. The multiplication of ice age theories
http://www.answersingenesis.org/home/area/fit/chapter6.asp
7. The Genesis flood caused the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter7.asp
8. The snowblitz
http://www.answersingenesis.org/home/area/fit/chapter8.asp
9. The peak of the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter9.asp
10. Catastrophic melting
http://www.answersingenesis.org/home/area/fit/chapter10.asp
11. Only one Ice Age
http://www.answersingenesis.org/home/area/fit/chapter11.asp
12. Do ice cores show many tens of thousands of years?
http://www.answersingenesis.org/home/area/fit/chapter12.asp
13. Where was man during the Ice Age?
http://www.answersingenesis.org/home/area/fit/chapter13.asp


*참조 : The Ice Age - Part 1, Michael Oard  (youtube 동영상)

https://www.youtube.com/watch?v=N2IT848_nS8

The Ice Age - Part 2, Michael Oard (youtube 동영상)

https://www.youtube.com/watch?v=Jhzbl-jbL0Y

The Ice Age - Part 3, Michael Oard (youtube 동영상)

https://www.youtube.com/watch?v=PO_tch0uI0c

The Ice Age - Part 4, Michael Oard (youtube 동영상)

https://www.youtube.com/watch?v=MLzO1u-HuRo


번역 - 강기태

링크 - https://answersingenesis.org/answers/books/frozen-in-time/preface/ 

출처 - AiG

Jake Hebert
2017-01-09

유명 과학 잡지는 유효하지 않은 밀란코비치 빙하기 이론 

논문의 기념일을 축하하고 있었다. 

('Big Science' Celebrates Invalid Milankovitch Paper)


      2016년 12월 Science 지와 Nature 지는 40년 전에 Science 지에 발표됐던 "지구 궤도의 변동: 빙하기의 주기 조절자(Variations in the Earth's Orbit: Pacemaker of the Ice Ages)"라는 한 논문의 발간 기념일을 축하하고 있었다.[1, 2, 3] 그 논문은 많은 세속적 과학자들에게 천문학적 빙하기 이론, 또는 밀란코비치 빙하기 이론(Milankovitch ice age theory)의 타당성을 확신시켜 주었다. 밀란코비치 이론에 따르면, 빙하기는 지구의 궤도와 공전 운동의 변화로 인해 발생했던, 햇빛의 계절적 분포 및 위도적 분포의 변동에 의해 어떻게든 보조를 맞추어 일어났다는 것이다. 그 논문은 인도양 남부 심해저에서 채취된 2개의 퇴적물 코어(deep-sea sediment cores)로부터 분석된 데이터를 사용하여, 지구가 대략 10만 년, 4만2천 년, 2만3천 년의 기후 주기(climate cycles)를 경험해왔다고 주장했다. 이 주기의 길이는 밀란코비치 이론에 의해서 예측된 궤도 주기의 길이와 일치했기 때문에, 밀란코비치 빙하기 이론에 대한 강력한 증거로 여겨졌었다.

그러나 그 논문은 이전 글에서 심도 있게 논의했던 것처럼, 심각한 문제점을 가지고 있다.[4, 5] 그 논문의 저자들은 분석을 수행하기 전에, 두 심해 퇴적물 코어의 연대를 먼저 결정해야만 했다. 특히 두 개의 심해 코어 중 더 오래된 것을 70만 년 전으로 가정했던 시간 틀을 사용했다. 그 연대는 지구 자기장의 가장 최근의 역전(reversal or flip)이 일어났던 시기로 추정되던 연대였다.[6] 그러나 사반세기 전쯤에, 세속적 과학자들은 이 자기장 역전의 연대를 78만 년으로 수정했다.[7]

이 연대 개정은 주기 조절자(pacemaker)의 결과에 중대한 영향을 줄만큼 충분히 커다란 수정이었다. 주기 조절자 논문에 사용된, 원래의 변경되지 않은 10cm 해상도의 데이터는 공개적으로 사용해볼 수 없기 때문에, 나는 주기 조절자의 논문에 게시된 수치들을 사용하여, 퇴적물 코어로부터의 데이터를 재구축해 보았다. 그런 다음에 주기 조절자 논문의 결과를 재현해보기 위해서, 재구축된 데이터를 사용하였다. 마지막으로, 나는 이 연대 수정의 영향을 고려한 후, 계산을 다시 수행해보았다. 이 개정된 연대는 코어에 할당됐던 연대를 길게 연장시켰고, 이것은 명백히 기후 사이클을 연장시켰다. 이것은 그 이론과 일치하지 않는 결과를 보여주기에 충분했다. 원 논문에서 보고됐던 기후 주기의 길이는 밀란코비치의 기대치와 대체로 일치했지만, 새로운 결과는 더 이상 일치하지 않았다.

나는 광범위한 인터넷 검색을 실시해보았지만, 세속적 문헌에서 이 문제를 인정하는 단 하나의 글도 찾아볼 수 없었다. 2016년 3월에 시작하여, 이 문제가 공개적으로 논의된 후에도, 세속적 과학자들은 이 상징적 논문에서 눈에 띄게 명백한 문제점을 인정하지 않으려 하고 있었다. 오히려 그들은 적어도 25년 동안 유효하지 않은, 상징적 논문의 기념일을 축하하고 있었던 것이다.

이 사실은 지사학 및 '기후 변화' 논쟁에 있어서 매우 중요한 의미를 가지고 있다. 우리는 2017년 1월의 Acts & Facts 글에서 이것에 대해 좀 더 자세히 다룰 것이다.



References
1. Hodell, D. A. 2016. The smoking gun of the ice ages. Science. 354 (6317): 1235-1236.
2. Maslin, M. 2016. Forty years of linking orbits to ice ages. Nature. 540 (7632): 208-210.
3. Hays, J. D., J. Imbrie, and N. J. Shackleton. 1976. Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science. 194 (4270): 1121-1132.
4. Hebert, J. 2016. Milankovitch Meltdown: Toppling an Iconic Old-Earth Argument, Part 1. Acts & Facts. 45 (11): 10-13.
5. Hebert, J. 2016. Milankovitch Meltdown: Toppling an Iconic Old-Earth Argument, Part 2.Acts & Facts. 45 (12): 10-13.
6. Shackleton, N. J. and N. D. Opdyke. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research. 3 (1): 39-55.
7. Shackleton, N. J., A. Berger, and W. R. Peltier. 1990. An Alternative Astronomical Calibration of the Lower Pleistocene Timescale Based on ODP Site 677. Transactions of the Royal Society of Edinburgh: Earth Sciences. 81 (4): 251-261.
8. Hebert, J. 2016. Revisiting an Iconic Argument for Milankovitch Climate Forcing: Should the 'Pacemaker of the Ice Ages' Paper Be Retracted? Part 1. Answers Research Journal. 9: 25-56.
9. Hebert, J. 2016. Revisiting an Iconic Argument for Milankovitch Climate Forcing: Should the 'Pacemaker of the Ice Ages' Paper Be Retracted? Part 2. Answers Research Journal. 9: 131-147.
10. Hebert, J. 2016. Revisiting an Iconic Argument for Milankovitch Climate Forcing: Should the 'Pacemaker of the Ice Ages' Paper Be Retracted? Part 3. Answers Research Journal. 9: 229-255.

*Dr. Hebert is Research Associate at the Institute for Creation Research and earned his Ph.D. in physics from the University of Texas at Dallas.

 

*참조 : The Ice Age - Part 1, Michael Oard (youtube 동영상)
https://www.youtube.com/watch?v=N2IT848_nS8

The Ice Age - Part 2, Michael Oard (youtube 동영상)
https://www.youtube.com/watch?v=Jhzbl-jbL0Y

The Ice Age - Part 3, Michael Oard (youtube 동영상)
https://www.youtube.com/watch?v=PO_tch0uI0c

The Ice Age - Part 4, Michael Oard (youtube 동영상)
https://www.youtube.com/watch?v=MLzO1u-HuRo



번역 - 미디어위원회

링크 - http://www.icr.org/article/9763

출처 - ICR News, 2016. 12. 26.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6519

참고 : 6123|6409|4535|4195|6006|6181|5858|5013|5636|4681|4116|2906|2143|3200|2141|4485|5412|3699|1472|1474|2645|3966|2179|4668

미디어위원회
2016-07-06

대양저 퇴적물 연구와 빙하기 

(Seafloor Sediment Research: Nearing Completion)

Jake Hebert 


       세속적 과학자들은 지난 몇 백만 년 동안 50번 정도의 빙하기(ice ages)가 있었다고 믿고 있으며, 그것을 설명하기 위해 밀란코비치 이론(Milankovitch theory)을 사용하고 있다. 그 이론에 따르면, 지구 궤도 및 회전 운동의 느린 변화는 여름 동안 북반부 고위도 지역에 비춰지는 햇빛의 양을 변경시켰다는 것이다. 그래서 여름 햇빛이 최소였을 때, 빙하기가 발생했다고 가정하고 있다.

그러나 밀란코비치 이론은 심각한 문제가 있다. 예를 들어, 계산된 일광의 변화는 너무 작아서, 그 자체로는 빙하기의 원인이 될 수 없다는 것이다.[1] 그럼에도 불구하고, 밀란코비치 이론은 1976년에 발표된 ”빙하기의 주도자(Pacemaker of the Ice Ages)”라는 제목의 상징적 논문으로 인해 정당성을 부여받았다.[2] 인도양 두 곳의 심해 퇴적물 코어 내의 화학적 '흔들림(wiggles)'에 대한 분석은 밀란코비치 이론과 일치하는 패턴을 보여주었고, 이것은 많은 동일과정설 과학자들에게 그 이론이 맞는다는 확신을 가져다주었다.[3] 사실, 밀란코비치 이론의 유일한 실제적 증거는 심해 퇴적물 코어 내의 화학적 흔들림이라고 말해도 과장이 아니다.[4]

이러한 이유로, 빙하기의 원래 주도자가 유효하지 않다는 사실은 밀란코비치 이론을 심각하게 약화시키는 것이다. 그리고 유효하지 않다는 결론은 이미 세속적 과학자들 자체 내에서도 제기되고 있었다! 인도양의 심해 퇴적물 코어에서 화학적 흔들림을 분석하기 전에, ”빙하기의 주도자” 논문의 저자들은 심해 퇴적물 코어에 대한 연대 추정을 먼저 해야 했다. 그들의 연대 틀은 가장 최근의 자기장 역전(magnetic reversal)이 70만 년 전에 있었다는 진화론적 추정 연대에 의존하는 것이었다.[2, 5] 그러나 이후에 세속적 과학자들은 자기장 역전의 연대를 78만 년 전 이전으로 수정했다.[6] 놀랍게도, 세속적 과학자들은 이 연대 수정이 원래의 결과에 어떤 영향을 미칠지를 신경 쓰지 않았던 것으로 보인다.

지난 달의 기사에서 본인이 지적했던 것처럼, 나는 ”빙하기의 주도자” 논문에서 발표된 결과를 검토해오고 있었다.[7] 내 연구의 1편은 앞에서 기술한 연대 수정 문제를 포함하여, 그 논문의 문제점을 개괄적으로 소개하는 것이었다.[8] 2편에서는 그 논문에서 사용했던 수학을 설명했고, 합리적인 정확성으로 그 논문의 원래 결과를 재현할 수 있음을 보여주었다.[9] 이 논문들은 모두 온라인으로 발표되었다. 나는 독자들에게 나의 두 번째 논문에 있는 그림 9-17을 ”빙하기의 주도자” 논문에 있는 그림 5의 그래프와 비교해볼 것을 권한다.(그 논문의 복사본도 온라인에서 찾아볼 수 있다). 그림에 들어있는 전문용어를 이해하지 못하는 사람이라 하더라도, 나의 결과와 그들의 결과가 잘 일치된다는 것은 명백히 알 수 있다.

이제 원래 결과를 재현할 수 있음을 보여주면서, 이 연구의 마지막 단계는 세속적 과학자들의 자기장 역전에 대한 새롭게 수정된 연대를 사용하여 재계산을 해보는 것이다. 당신이 이 글을 읽을 때쯤이면, 3편이 온라인 판으로는 게재되면서, 정식 게재를 기다리고 있을 수 있다. 그 결과는 세속적 과학자들을 심각하게 당황시킬 것이다. 나는 이 연구를 쉽게 이해하도록 하는 글을 조만간 Impact 지에 게재하려고 한다. 계속 지켜봐 달라!



References

1.Oard, M. J. 2007. Astronomical troubles for the astronomical hypothesis of ice ages. Journal of Creation. 21 (3): 19-23.
2.Hays, J. D., J. Imbrie, and N. J. Shackleton. 1976. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science. 194 (4270): 1121-1132.
3.These chemical wiggles are related to the ratio of a heavy oxygen isotope to a lighter oxygen isotope, differences in which are thought to indicate past changes in Earth’s climate. For more information, see Hebert, J. 2016.Deep Core Dating and Circular Reasoning. Acts & Facts. 45 (3): 9-11.
4.Muller, R. A. and G. J. MacDonald. 2000. Ice Ages and Astronomical Causes: Data, Spectral Analysis and Mechanisms. Chichester, UK: Praxis Publishing, xiv, xvii.
5.Shackleton, N. J. and N. D. Opdyke. 1973. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quaternary Research. 3 (1): 39-55.
6.Shackleton, N. J., A. Berger, and W. R. Peltier. 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh: Earth Sciences. 81 (4): 251-261.
7.Hebert, J. 2016. Seafloor Sediment Research: Exciting Results! Acts & Facts. 45 (6): 9.
8.Hebert, J. 2016. Should the 'Pacemaker of the Ice Ages” Paper Be Retracted? Answers Research Journal. 9: 25-56.
9.Hebert, J. 2016. Revisiting an Iconic Argument for Milankovitch Climate Forcing. Answers Research Journal. 9: 131-147.

* Dr. Hebert is Research Associate at the Institute for Creation Research and earned his Ph.D. in physics from the University of Texas at Dallas.

Cite this article: Jake Hebert, Ph.D. 2016. Seafloor Sediment Research: Nearing Completion. Acts & Facts. 45 (7).


번역 - 미디어위원회

링크 - http://www.icr.org/article/9397 

출처 - ICR, Acts & Facts. 45 (7).

미디어위원회
2016-06-02

빙하기를 초래한 노아의 홍수

(Setting the Stage for an Ice Age)

by Michael J. Oard, Ph.D.


    노아 시대의 대홍수는 지구 역사상 가장 커다란 대격변이었다. 그리고 노아의 홍수는 단지 비만 내린 것이 아닌 훨씬 많은 사건들을 포함하고 있었다. 지구의 표면은 새로운 모습으로 완전히 바뀌어졌고, 오늘날과는 비교도 되지 않는 엄청난 화산폭발들과 지진들이 일어났다. 그러한 엄청난 대격변은 지구의 기후를 근본적으로 바꾸어버렸고, 빙하기(Ice Age)를 초래하였다.

일반적으로 ‘빙하기’라는 용어는 비교적 넓은 지역이 얼음으로 뒤덮인 광범위한 빙하 활동의 시기를 가리킨다. 수천년 전에 끝난 빙하기 동안에, 지구 지표면의 30%는 얼음으로 뒤덮였었다(그림 1). 북아메리카에서 한 빙상(ice sheet)은 거의 캐나다 전체와 미국 북부 지방을 뒤덮고 있었다.

그림 1. 빙하기 동안의 빙하 분포도. 빙하기 동안에 지구 육지표면의 거의 30%는 얼음으로 뒤덮여 있었다(하얀색). 오늘날에는 단지 10% 정도만이 얼음으로 덮여있다.

우리는 빙하기에 빙하들의 확장 범위를 알고 있다. 왜냐하면 빙하들은 오늘날 빙하들 주변에서 관측되는 것과 유사한 모습들을, 가령 측퇴석(lateral moraines)과 종퇴석(terminal moraines) 같은 것들을 지형에다 남겨놓았기 때문이다.(그림 2). 측퇴석은 움직인 빙하의 측면에 퇴적된 다양한 크기의 암석들의 더미(mound)이다. 그리고 종퇴석 또는 단퇴석은 빙하의 앞쪽에 내버려진 암석들의 더미이다.

그림 2. 측퇴석(lateral moraine). 측퇴석은 움직인 빙하의 측면에 퇴적된 다양한 크기의 암석들의 더미이다. 우리는 빙하기 동안에 빙하들의 확장 범위를 알 수 있다. 왜냐하면 위의 사진에서와 같이 빙하들은 오늘날의 빙하들 주변에서 관측되는 것과 유사한 모습들을 지형에 남겨놓았기 때문이다.


빙하기의 원인 대홍수

노아 홍수의 특별한 2가지 면은 빙하기를 초래하는 원인이 되었다. 그것은 1)홍수 동안과 홍수 이후의 대대적인 화산활동과 2)홍수에 뒤이은 따뜻한 대양이었다.

‘큰 깊음의 샘들(fountains of the great deep)’의 터짐과 이로 인해 발생한 전 지구적 홍수는 지각의 융기와 엄청난 화산활동을 유발하였을 것이다. 화산재와 연무질(매우 작은 입자들)의 덮개는 성층권 안으로까지 던져졌을 것이고, 홍수 이후 수년 동안 그곳에 갇혀있었을 것이다. 이 입자들은 햇빛의 일부를 우주로 반사하였고, 주로 거대한 땅덩어리들에서 추운 여름(cooler summers)들의 원인이 되었을 것이다.(그림 3).

그림 3. 대기 중 햇빛의 반사. 전 지구적인 홍수는 대대적인 융기와 엄청난 화산활동을 유발했을 것이다. 그 결과로서, 화산재와 연무질의 덮개는 성층권(지표면에서 12~21 마일 높이의 대기층) 안으로까지 퍼져나갔을 것이고, 홍수 이후 수년 동안 그곳에 존재했을 것이다. 이 입자들은 햇빛의 일부를 우주로 반사했고, 거대한 땅덩어리들에서 추운 여름을 초래했을 것이다.

대규모의 화산활동은 홍수 후 여러 해 동안 계속되었을 것이고, 지각의 마그마들이 굳어지고 지각 이동이 줄어들면서 점차적으로 줄어들었을 것이다. 빙하기 동안에도 매우 활발한 화산활동들이 있었다는 풍부한 증거들이 있다. 이것은 성층권에 먼지와 연무질들을 재보충하였을 것이다. 그린란드와 남극대륙으로부터 채취된 빙핵(ice cores)들 또한 빙하기와 관련된 부분에서 풍부한 화산성 입자들과 산성물질들을 보여주고 있다.

빙하기는 또한 대기 중에 눈으로 떨어질 엄청난 양의 물을 요구한다. 그러나 대기 중에 포화된 엄청난 양의 물은 어디에서 올 수 있었는가? 창세기는 홍수 동안에 큰 깊음의 샘들이 터졌다고 기록하고 있다 (창 7:11). 지구 지각의 이동은 깊고 뜨거운 저장소들로부터 고압의 유출물을 분출시켰을 것이다. 그리고 거대한 화산분출과 물 아래에서 분출되는 용암들은 대양의 온도를 상승시켰을 것이다('A Catastrophic Breakup” p.44 를 보라). 빠른 홍수물의 흐름은 따뜻한 물들을 혼합시켰을 것이고, 그 흐름은 남극에서부터 북극까지 유도되었을 것이다. 따뜻한 물의 바다에서 얼음의 형성은 방해되었을 것이다. 결과적으로, 따뜻한 대양은 오늘날의 차가운 대양보다 훨씬 많은 증발을 일으켰을 것이다. 그러한 상황 하에서, 많은 눈들이 극지방들과 중위도의 지역들에 내렸을 것이다(그림 4). 따뜻한 물(warm water)과 차가운 대륙(cold continents)은 강력하고 지속적인 눈폭풍(snowstorms)들을 만드는 기본 요소이다. 눈폭풍의 행동은 기본적인 기상 원리들을 사용하며 평가될 수 있다.

그림 4. 홍수 이후 대양의 증발. 빠른 홍수물의 흐름은 따뜻한 물들을 혼합했고, 바다에 얼음이 없게 하였다. 이 그림은 바다에서 훨씬 많은 증발을 보여준다. 그 결과는 중위도와 극지방들에 많은 폭설을 내리게 했을 것이다.


빠른 빙하기

대기과학에서 알고 있는 것에 기초하여, 따뜻한 물이 증발했을 곳과 얼음의 깊이는 얼마나 됐을지, 그리고 심지어 빙하기는 얼마나 오래 지속되었을 것인지를 평가해볼 수 있다. 이 질문에 대답하기 위해서, 우리는 얼마나 오래 주요한 화산활동들이 지속되었는지를 알 필요가 있다. 그리고 대양이 냉각되기까지 얼마의 시간이 걸렸을 것인지를 알 필요가 있다. 일단 화산폭발이 감소되고, 대양이 식으면서, 빙상들은 성장하는 것을 멈췄을 것이고, 녹기 시작했을 것이다.

나는 빙하기의 최정점에서 북반구의 대부분을 덮었던 얼음의 평균 두께가 대략 701m (2,300 피트)라고 계산하였다. 그리고 그 깊이에 도달하는 데에 대략 500년쯤 걸렸던 것으로 산출했다. 이 근사치는 따뜻한 중위도의 바다와 차가운 고위도의 바다에서의 증발, 그리고 저위도로부터 고위도로의 수송들을 포함하여 수증기의 출처들을 평가함으로서 계산되었다. 대양들의 냉각의 2/3는 물들의 증발에 의해서이다. 최초와 한계치의 평균 대양 온도를 평가함으로서, 나는 또한 증발량을 평가할 수 있었다. 그 다음에 빙상 위에 떨어졌을 수증기의 대략적인 비율을 계산했다. 나는 변동 폭들에 대한 최소 최대 값들을 사용하였고, 그 중앙치를 가장 좋은 수치로 평가했다.

만약 우리가 빙상 후퇴(가장자리에서 1년에 10m, 그러나 안쪽에서는 더 느린)에 관한 용융 방정식을 적용한다면, 초거대한 대륙빙상도 (축적의 정점 후에) 200년 안에 녹아 없어질 것이다. 물론 그린란드와 남극대륙에서 빙하들은 그들의 고도와 고위도 때문에 성장을 계속할 수도 있다. 따라서 빙하기의 전체 기간은 단지 700년 정도가 최대였다. (500년의 축적과 200년의 해빙).


홍수는 오래된 연대의 도전을 해결해 준다.

대륙들, 퇴적지층들, 기후들에 대한 전 지구적인 홍수의 영향에 관해 알고 있는 것에 기초하여, 빙하기는 진화론이 말하고 있는 수십 수백만 년의 시간들을 필요로 하지 않는다는 것은 분명하다. 더군다나 과거 250만 년동안 30번 정도의 분리된 빙하기들이 있었다는, 그리고 가장 최근의 빙하기는 10만 년 동안 지속됐었고, 그 이전 빙하기는 4만년 지속됐었다는 현대의 복잡한 진화론적 생각을 받아들일 필요가 전혀 없는 것이다. 대신에, 홍수에 대한 성경적 역사에서 출발하여, 그리고 성경적 조망으로 그 증거들을 바라봄으로서, 우리는 빙하기가 어떻게 시작되었고, 얼마나 지속되었는지 등에 대한 답을 쉽게 찾을 수 있는 것이다.


*Michael Oard is a retired meteorologist from the National Weather Service. Using his field of expertise and his biblical perspective, he has written numerous articles and authored or co-authored various books, including An Ice Age Caused by the Genesis Flood and The Weather Book.


*빙하기에 관한 더 많은 자료들은 Michael Oard가 쓴 아래의 책 'Frozen in Time ”를 참조하세요. (Frozen in Time - by Michael Oard).

1. Frozen mammoth carcasses in Siberia
http://www.answersingenesis.org/home/area/fit/chapter1.asp
2. Why live in Siberia?
http://www.answersingenesis.org/home/area/fit/chapter2.asp
3. The mystery of the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter3.asp
4. A mammoth number of mammoth hypotheses
http://www.answersingenesis.org/home/area/fit/chapter4.asp
5. The extinction wars
http://www.answersingenesis.org/home/area/fit/chapter5.asp
6. The multiplication of ice age theories
http://www.answersingenesis.org/home/area/fit/chapter6.asp
7. The Genesis flood caused the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter7.asp
8. The snowblitz
http://www.answersingenesis.org/home/area/fit/chapter8.asp
9. The peak of the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter9.asp
10. Catastrophic melting
http://www.answersingenesis.org/home/area/fit/chapter10.asp
11. Only one Ice Age
http://www.answersingenesis.org/home/area/fit/chapter11.asp
12. Do ice cores show many tens of thousands of years?
http://www.answersingenesis.org/home/area/fit/chapter12.asp
13. Where was man during the Ice Age?
http://www.answersingenesis.org/home/area/fit/chapter13.asp

 

*The extinction of the woolly mammoth: was it a quick freeze?
http://creationontheweb.com/images/pdfs/tj/j15_2/j15_2_50-52.pdf

Loess problems
http://creationontheweb.com/images/pdfs/tj/j21_2/j21_2_16-19.pdf


번역 - 미디어위원회

링크 - http://www.answersingenesis.org/articles/am/v2/n2/setting-stage-for-ice-age

출처 - Answers, 2008. 10. 14.

미디어위원회
2015-03-25

밀란코비치 주기에 의한 빙하기 이론이 부정되었다. 

(Orbital Ice Age Theory Melts)


       지구의 공전 궤도 주기는 빙하기의 원인이 아니었다고, 새로운 연구는 제안하고 있었다. 대신, 전 세계가 한 번의 빙하기를 동시에 경험했다는 것이다.

과거의 빙하기(ice ages)에 대한 선도적인 세속적 이론은 한 새로운 연구 결과에 의해서 녹아내리고 있었다. 세속적 빙하기 이론에 따르면, 밀란코비치 주기(Milankovitch cycles)라 불리는 공전 궤도 주기에 의해서, 지구는 태양에 가깝게 또는 멀게 공전했으며, 또한 기울기(자전축 경사)가 요동했는데, 이것들이 기후 변화를 초래했다는 것이다. 그러나 Geology(2015. 3. 19) 지에 게재된 한 논문은 그 이론은 의문스럽다는 것이다. NASA의 우주생물학(Astrobiology Magazine) 지는 이렇게 설명하고 있었다 :

연구자들은 남반구에서 빙하의 움직임은, 북반구에서 빙상(ice sheets)의 전진과 후퇴를 유도했다고 생각되고 있었던 지구 공전 궤도의 변화보다는, 오히려 해수면 온도와 대기 중 이산화탄소(CO2)의 농도에 의해서 주로 영향을 받았음을 발견했다...

그 연구는 기후 변화를 초래했다는 밀란코비치 이론(Milankovitch theory)에 의문을 불러일으키고 있었다. 밀란코비치 이론에 의하면, 북반구 대륙 빙상의 확장과 수축은 지구 공전 궤도의 동요에 기인했던, 태양 복사선 강도의 주기적 변동에 의해서 영향을 받았다는 것이다. 그러한 궤도적 변동은 남반구 빙하에 반대 효과를 가져왔어야만 한다.

다트머스(Dartmouth) 대학의 지질학자들은 뉴질랜드 빙하에서 베릴륨-10(Beryllium-10)의 데이터를 살펴보았다. 그리고 과거 남반부의 빙하들은 북반구의 빙하들처럼 거대했음을 발견했다. 이것은 밀란코비치 이론과 모순되는 것이었다 :

이것은 전 세계가 동시에 추웠다는 것을 가리킨다. 하지만 밀란코비치 이론은 북반구와 남반구에 반대 효과를 나타냈어야만 한다. 따라서 그 이론은 빙하들이 전 세계에서 동시적으로 발달했다는 것을 설명할 수 없다. 이전 연구들도 또한 안데스 산맥 남부의 칠레 빙하가 북반구의 빙상들처럼 같은 시기에 거대했음을 보여줬었다.

밀란코비치 이론에 대한 이러한 신뢰의 손상은 오늘날 기후 변화에 대한 논란에도 의미를 부여하는 것이다 :

”온난화로 인해 미래의 세계 기후가 어떻게 변화될 지를 과학자들이 예측할 수 있는 유일한 근거는 과거의 기후 변화에 대한 기록이다. 과거의 기후 변화의 원인에 관하여, 그리고 전 지구의 냉각과 온난화의 신호가 무엇이었는지에 대하여 이해하면 할수록, 미래의 기후 변화를 예측하고 대비할 수 있는 것이다.” 빙하기와 같은 거대한 스케일의 전 지구적 기후 변화의 원인이 무엇인지를 이해하기 위해서 뉴질랜드 산맥의 빙하들을 연구했던, 다트머스 대학의 빙하 지질학자이며, 논문의 선임 저자인 앨리스 도우티(Alice Doughty)는 말했다. 

반대로 생각해보면, 과거 거대한 기후 변화의 원인에 대해서 이해하지 못하고 있다면, 그들은 미래의 온난화도 예측할 수 없는 것이다.

성경적 지질학자들은 여러 번의 빙하기가 아니라, 창세기 홍수의 여파로 초래된 단 한 번의 빙하기를 주장해왔다. 그들은 대대적인 강설의 원인으로 바닷물 온도의 상승을 지적해 왔었다. 사실 그것은(따뜻한 바다) 강설을 증가시킬 수 있는 유일한 메커니즘 이다. 연구자들이 말한 것처럼, 밀란코비치 주기(Milankovitch cycles)는 너무 약해서, 기후 변화를 설명할 수 없다. 대신에, ‘큰 깊음의 샘들(fountains of the great deep)’이 터지며 방출된 내부적 열은 바닷물 온도의 급격한 상승의 원인이 되었다.(창세기 7:11) 그 결과 대대적이고 급속한 강설이 이루어졌고, 빙하기가 초래되었던 것이다. 또한 홍수 모델은 대륙들이 갈라지고 급속히 이동하면서 일어났던 지각 변동(격변적 판구조론)에 대한 재조정으로, 홍수 이후 수세기 동안 진행됐던 빙하들의 전진과 후퇴를 설명할 수 있다.

다음의 글들을 보라. ”Breaking up an ice age is hard to do” (7/01/10) and ”Milankovitch cycles indistinguishable from randomness” (6/02/09).

---------------------------------------------------

이것은 중요하다. 왜냐하면 밀란코비치 이론은 동일과정설 지질학자들에게는 '받아들여진 진실'로 여겨지고 있었기 때문이다. 창조 지질학자들은 이 새로운 연구를 자세히 검토해볼 필요가 있다. 그리고 이제 밀란코비치 이론은 실패했으며, 창세기 홍수 이론이 지지받고 있다는 것을 홍보할 필요가 있다. 또한 이 이야기는 크리스천들이 세속적 과학자들이 믿고 있는 동일과정설적 진화 이론과 그들의 장구한 시간 틀에 맞추기 위해서, 성경을 훼손하고 다르게 해석하는 일이 (그들의 이론이 부정되었을 때) 얼마나 허탄하고 위험한 일인지를 명백하게 보여주고 있는 것이다.

 


*참조 : The Ice Age - Part 1, Michael Oard  (youtube 동영상)

https://www.youtube.com/watch?v=N2IT848_nS8

The Ice Age - Part 2, Michael Oard (youtube 동영상)

https://www.youtube.com/watch?v=Jhzbl-jbL0Y

The Ice Age - Part 3, Michael Oard (youtube 동영상)

https://www.youtube.com/watch?v=PO_tch0uI0c

The Ice Age - Part 4, Michael Oard (youtube 동영상)

https://www.youtube.com/watch?v=MLzO1u-HuRo


번역 - 미디어위원회

링크 - http://crev.info/2015/03/orbital-ice-age-theory-melts/

출처 - CEH, 2015. 3. 23.

미디어위원회
2014-09-29

고대의 거대한 빙산과 빙하기, 그리고 노아의 홍수

(Bible May Solve Colossal Ancient Iceberg Riddle)

by Brian Thomas, Ph.D.


      빙산(iceberg)을 만들었던 과정은 무엇이었을까? 과학자들은 극지방의 빙상(ice sheets, 대륙빙하)을 보면서 기본적인 것을 알고 있다. 거대한 얼음 덩어리들이 갈라지고, 미끄러져, 빙산으로 떠다닌다. 그러나 그것은 오늘날의 빙산이다. 새로운 연구는 거대한 빙산이 과거에 존재했다는 증거를 보여주었다. 그 빙산은 오늘날의 산처럼 떠다니는 빙산들을 난쟁이로 만들고 있었으며, 세속적인 설명을 거부하고 있었다.

지구물리학회 저널(Geophysical Research Letters)에 발표된 독일의 알프레드-베게너 연구소(Alfred-Wegener Institute, AWI)의 헬름홀츠 극지해양 연구센터(Helmholtz Centre for Polar and Marine Research)의 연구 결과에 의하면, 연구자들은 그린란드 동부 해안에서 약 400km 떨어진, 해수면 약 1,200m 아래 지점에서, 빙산에 의한 5개의 깊은 침식 흔적들을 발견했다.[1] 그곳 프람 해협(Fram Strait)에는 극지방 얼음이 세계에서 가장 큰 바다중 하나로 들어간다. 매년 발생하는 이러한 과정은 해양생태계 및 전 지구적 기후 패턴에 영향을 끼치고 있다.

연구의 저자들은 그들이 발견한 것을 설명하기 위해서 몇 가지 답을 제공하고 있었다. 첫째, 빙하기 동안에 오늘날의 바닷물의 상당량은 대륙 위의 거대한 빙상으로 동결되어 있었다. 그것은 고대의 해수면(sea level)을 상당히 낮게 만들었다. AWI 보도 자료는 말했다. ”빙하기 동안의 해수면은 오늘날보다 120m는 더 낮았기 때문에, 빙하기의 빙산들은 해수면 아래로 적어도 1080m 깊이에 도달했다.”[2] 그것은 빙산이 어떻게 그렇게 멀리 깊은 곳까지(항상 멀고 깊은 것은 아니었다) 도달할 수 있었는지를 설명하는 데에 도움을 주고 있다.

그러나 오늘날 남극에서 발생하는 가장 큰 빙산도 해수면 아래 600m 정도에 불과하다. 따라서 1080m 깊이에 도달했던 빙산은 전대미문의 것이다. 그 보고서의 선임 저자이며, AWI의 수심측량가인 얀 에릭 아른트(Jan Erik Arndt)는 말했다. ”그러한 거대한 스케일의 빙산이 분리되기 위해서는, 북극해를 덮고 있던 빙상의 가장자리가 적어도 1200m 두께는 됐었음에 틀림없다.”

그것은 엄청난 량의 얼음이다. 오늘날의 정상적 기후 과정으로는 만들어질 수 없는, 너무도 많은 양이다. 오늘날 그러한 대륙빙하를 만들기에는 강설량이 충분치 않으며, 여름은 너무 따뜻하다. AWI는 썼다. ”한 가지 남아있는 수수께끼는 Hovgaard Ridge를 파낸 대대적인 빙산의 탄생이다.”[2]

이 고대 빙산의 수수께끼는 빙하기의 수수께끼와 일맥상통한다. 수십 개의 세속적 기후 모델들은 고대 대륙 위에 쌓여진 극도로 많은 얼음의 축적을 설명하는데 실패해왔다. 다행히도, 한 모델은 그것을 매우 잘 설명할 수 있다. 그것은 격변적 대홍수 이후에 도래된 한 번의 빙하기 모델이다. 수백만 년의 시간 틀을 주장하는 사람들에게는 불행하게도, 충분한 얼음을 축적했던 열쇠는 훨씬 짧은 기후 시간 틀이다.


빙하기(Ice Age)를 초래하는데 있어서 가장 중요한 조건은 따뜻한 바다(hot oceans)와 차가운 대기(colder atmosphere)이다.


바다는 엄청난 량의 증발(evaporation)을 일으키도록 빠르게 충분히 가열되어야만 했다. 그런 다음 대기 중으로 증발된 엄청난 량의 물은 냉각되어, 대륙 위에 눈으로 내렸고, 대륙빙하로 커져갔다. 창조 지질학자들은 바닷물을 따뜻하게 만들었던 열은 노아의 홍수 동안에 활발히 분화했던 해저 화산활동이 제공했을 것이라고 생각하고 있다.[3]

성경적 시간 틀을 가정할 때, 대대적인 화산분출 활동은 일 년 정도의 노아 홍수 동안과 직후에 일어났다. 이들 폭발에 의한 화산재는 홍수 물이 대륙으로부터 물러간 후에도 계속 태양 빛을 차단했고, 수 세기 동안 대기를 차갑게 만들면서 두터운 대륙빙하가 형성될 수 있도록 했다. 이것은 빙하기였다. 

세속적 모델은 작동되지 않는다. 왜냐하면 해저 화산폭발과 같은 열을 공급할 수 있는 사건들이 시간적으로 서로 멀리 떨어져있기 때문이다. 수백만 년이 아니라, 수백 년의 시간 틀이 주어진다면, 빠른 연속적인 화산폭발은 거대한 대륙빙하를 만드는데 필요한 열을 제공해줄 수 있었을 것이다. 그리고 그러한 거대한 빙산은 아른트의 연구가 보여주고 있는 해수면 깊은 곳의 거대한 침식을 만들 수 있었던 것이다.[4]



References

1.Arndt, J. E. et al. 2014. Deep water paleo-iceberg scouring on top of Hovgaard Ridge–Arctic Ocean. Geophysical Research Letters. 41 (14): 5068-5074.
2.Megascale icebergs run aground: Finding the deepest iceberg scours to date provides new insights into the Arctic’s glacial past. Alfred-Wegener Institute. Posted on awi.de August 5, 2014, accessed August 14, 2014.
3.Morris, J. 2012. The Global Flood. Dallas, TX: Institute for Creation Research.
4.In addition to hot oceans, sequential summers would have to remain cool enough to not melt the winter-accumulated ice. Closely timed post-Flood volcanoes explain this by adding sunlight-deflecting aerosols to Earth’s atmosphere. 'Therefore, the Ice Age is still a mystery to uniformitarian scientists because of their belief in millions of years! Since they incorrectly believe these volcanic eruptions to be separated by vast amounts of time, they are unable to fully make use of this potent cooling mechanism. Thus, we see that the Bible’s short 6,000 year timescale, rather than being an impediment to scientific understanding, is actually one of the keys that enable us to explain the Ice Age.” Hebert, J. 2014. The Ice Age and the Flood. Dallas, TX: Institute for Creation Research, 42.


번역 - 미디어위원회

링크 - http://www.icr.org/article/8345/

출처 - ICR News, 2014. 9. 15.

미디어위원회
2014-04-02

고대 호수 퇴적층과 기후 변화, 그리고 성경적 단서

(Ancient Lake Bed Merges with Biblical Clues)

by Brian Thomas, Ph.D.


     인도 북서부의 코트라 다하르(Kotla Dahar) 호수는 매년 장마 비로 채워지지만, 거의 반 년 동안은 비가 내리지 않기 때문에, 결국 말라버린다. 최근 과학자들은 이 오래된 말라버리는 호수가 항상 그렇지는 않았음을 가리키는 단서를 호수 바닥에 묻혀있는 퇴적층에서 발견했다.[1] 사실 과거에 그 호수는 물을 보유하고 있었다. 고대 유물들은 오래 전에 사람들이 그곳에서 번성했음을 보여주고 있었다. 그렇다면 기후 변화는 언제, 그리고 어떻게 일어났던 것일까? 창세기에 기록된 역사는 관련된 상황을 제공하고 있을까?       

연구자들이 발견한 단서는 화석의 변화였다. 호수 퇴적층의 아래쪽은 연중 물속에서 살아가는 생물의 작은 껍질들을 포함하고 있었다. 한 얇은 층으로 구별되는 중간 퇴적층은 소금물에 견디는 생물 화석들을 포함하고 있었고, 위쪽 퇴적층은 가뭄에 견디는 것으로 알려진 오늘날의 생물들로 구성되어 있었다.[1]    

Geology 지에 게재된 한 연구에서, 캠브리지 대학의 연구팀은 호수 바닥의 지층 순서대로 작은 화석들로부터 산소동위원소(oxygen isotope) 데이터를 수집했다.[1] 이들 동위원소는 아래 지층에서 지속적인 산소 유입(따라서 물의 흐름)이 발생했다가 후에 윗 지층에서 산소 유입이 정지되었음을 보여주고 있었다.

연구의 저자들은 그 단서를 몬순(monsoon) 계절이 한때 더 길게 지속됐었던 것으로 해석했다. 그들은 적도 근처 위도 지역의 대대적인 건조 시기 또는 ‘갑작스런 건조화(abrupt aridification)’로 부르고 있는 것을 보여주면서, 기후 변화의 시기를 중동, 지중해, 중국에서 발견된 유사한 단서들과 연관시키고 있었다.[1] 이러한 갑작스런 기후 현상을 일으켰던 원인은 무엇이었을까?

”약 4100년 전 ISM(인도의 여름 몬순)이 약화된 원인은 거대 규모의 열대 해양-대기 동력학, 즉 인도양 쌍극자(Indian Ocean Dipole, IOD)와 엘리뇨 남방진동(El Nino Southern Oscillation, ENSO)과  관련되어 있다.”고 캠브리지의 저자는 썼다.[1] 이 말은 기본적으로 바다표면 온도의 변화와 관련되어 있다. 그러나 오늘날의 비교적 미묘한 변화는 거대한 육상 지역을 광범위한 건조 기후로 변경시키지 못한다. 그들은 고대 중동지역 전체에 걸친 풍부했던 강우 패턴의 소실을 어떻게 설명하고 있는 것일까?

과거 인도 코트라 다하르 호수를 일 년 내내 물로 가득 채웠던 충분한 강우에 대한 열쇠는 중동지역에 한때 풍부했던 강우와 오늘날의 북아프리카 사막들을 과거 열대습지로 만들었던 것과 동일할 수 있다는 것이다. 그것은 대홍수 후에 초래된 단 일회의 빠른 빙하기일 수 있다.[2, 3] 과거에 바다 표면은 상당히 따뜻했음에 틀림없다. 노아 홍수는 그 대양을 따뜻하게 만들었던 열(heat)을 제공할 수 있지만, 장구한 지구 연대를 가정하고 그렇게 해석하려는 사람들은 아직도 그 열원(heat source)을 찾고 있다.[4]

연구자들은 고대 중동에서 발생했던 것으로 알고 있는 막대한 양의 강우를 유발하려면, 대양이 충분히 따뜻해야 하고, 그렇게 되기 위해서는 엄청난 양의 에너지가 투입되어야만 한다는 것을 알고 있다. 오늘날의 느리고, 꾸준한, 미묘한 온도 변화는 그러한 변화를 초래할 충분한 에너지를 발생시킬 수 없다. 그러나 대양으로 막대한 최근의 에너지 방출은 몬순 기후를 시발했을 수 있었을 것이다. 대규모의 강우 계절을 발생시키는 데에 필요한 열(heat)이 노아 홍수 동안에 투입될 수 있었을까? (그렇다. 노아 홍수 때에 '큰 깊음의 샘'들로부터 터져 나온 따뜻한 물뿐만 아니라, 대대적인 화산 활동들은, 아마도 홍수 후 대양의 온도를 훨씬 더 따뜻하게 만들었을 것이다.) 그리고 단지 수세기 후에 냉각될 수 있었을까?  

만약 그렇다면, 열대기후, 아열대기후, 반건조기후 등과 같은 연구 저자들이 설명하고 있는 ‘기후 단계(climate steps)’는 빙하기 말과 관련되어 있을 수 있다. 그 시기에 (빙하 호수들을 막고 있던) 많은 얼음 댐들이 녹으면서, 격변적으로 붕괴됐고, 영국해협을 파내어버린 것과 같은 거대한 지역적 홍수(local megafloods)들을 발생시켰을 것이다.[5] 얼음들과 차가운 물은 격변적으로 대륙붕과 전 세계 대양으로 쏟아져 들어갔을 것이다. 이러한 모든 배수들은 해수면을 90m 이상 상승시켰을 것이다.[6]

진화론적 동일과정설은 지역적 거대홍수들 사이에 긴 시간을 추가시키고 있다. 그러므로 대양은 점진적이고 느리게 냉각되었을 것으로 추정한다. 세속 과학자들은 몬순 계절이 한때 더 길게 지속됐다는 것을 호수바닥 퇴적층으로부터 확인하고 있었다. 그러나 성경의 기록을 포함하여(전 지구적 홍수와 일회적 빙하기 등) 모든 단서들을 고려할 때까지, 그 이유를 결코 알지 못할 것이다. 더 많은 연구들을 통해, 연구자들은 빙하기의 최근의 빠른 정지와 과거 인도와 다른 지역에서의 빠르고 극적인 기후 변화의 증거 사이에서 그 연결고리를 발견할 수 있을 것이다. 



References

1. Dixit, Y., D. A. Hodell, and C. A. Petrie. Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago. Geology. Published online before print February 24, 2014.
2. Thomas, B.Genesis and a 'Wet' Sahara. Creation Science Update. Posted on icr.org November 3, 2008, accessed March 3, 2014.
3. Hebert, J. 2013. Was There an Ice Age?Acts & Facts. 42 (12): 20.
4. Vardiman, L. and W. Brewer. 2011. A Well-Watered Land: Numerical Simulations of a Hypercyclone in the Middle East. Answers Research Journal. 4 (1): 55-74.
5. Thomas, B. Making Sense of Britain's Atlantis. Creation Science Update. Posted on icr.org July 27, 2012, accessed March 3, 2014.
6. Hoesch, W. A. 2007. Megafloods in the English Channel. Acts & Facts. 36 (10): 14.


번역 - 미디어위원회

링크 - http://www.icr.org/article/8028/

출처 - ICR News, 2014. 3. 17.



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광