LIBRARY

KOREA  ASSOCIATION FOR CREATION RESEARCH

창조설계

뒤로 향하는 인간 망막이 형편없는 설계인가?

뒤로 향하는 인간 망막이 형편없는 설계인가? 

(Is the Backwards Human Retina Evidence of Poor Design?)


서론

소위 뒤로 향하는 망막(backwards retina)은 창조론에 반하는 논쟁점 중의 한 가지 예로 오래 전에 틀렸음이 증명되었다. 그럼에도 불구하고, 생명은 설계되지 않았다라고 주장하는 다윈주의자들에 의해 가장 흔하게 사용되는 논쟁점들 중의 하나이다. 예를 들면, 미국의 주도적인 다윈주의자 중의 한 사람인 브라운 대학(Brown University) 교수인 케네쓰 밀러(Kenneth Miller)는 ‘빈약한 설계(poor design)’에 대한 주된 예로 인간 눈(human eye) 내에서 빛이 망막의 광수용체(retina photoreceptors)에 도달하기 전에 신경층(neuron layers)을 가로질러서 지나간다는 사실을 들고 있다. 그는 이러한 설계는 불완전한 지적설계자를 반영하고 있으며, 밀러 자신에게는 어떠한 설계자도 존재하지 않는다는 명백한 증거를 제공한다고 주장한다. 도리어 그것은 돌연변이와 자연선택에 의해서 눈이 진화되었으며, 설계된 것이 아니라는 것을 보여준다는 것이다. 밀러의 말에 따르면, 지적인 설계자라면 빛이 들어오는 쪽으로 향하는 면에 망막의 신경배선(neural wiring)을 두지 않았어야만 한다는 것이다. 이러한 배열은 우리의 시력을 덜 세밀하게 만들고 빛을 산란시키며, 심지어 시각 정보를 뇌로 운반하는 시신경을 만들기 위해서 배선이 빛에 민감한 망막을 가로질러 당겨지는 부분에 맹점(blind spot)이 만들어진다는 것이다 (1999, p. 101).


하지만, 맹점여러 가지 이유로 시각의 질을 감소시키지 않는다. 그것을 알아내기 위해서조차도 특별한 검사들이 대개 필요한데, 그것은 다른 쪽 눈이 갭(gap)을 메우기 때문이다. 게다가, 뇌는 이미지를 구성하기 위해서 망막으로부터 온 정보를 사용할 뿐이며, 그림자, 반사문제, 흐릿한 빛, 그리고 안경에 있는 먼지와 같이 다른 ‘맹점’들을 처리하는데 있어서 뛰어나게 일을 수행한다. 셔며(Shermer)는 인간의 눈은 단지 서투르게 설계된 것이 아닐 뿐만 아니라, 인간 눈의 해부학적 구조는 명백히 ‘지적으로 설계된’ 것임을 보여준다고 주장한다. 그것은 빛 신호를 신경자극으로 변환하는 빛에 민감한 간상세포와 원추세포에 도달하기 전에 각막, 렌즈, 수양액(aqueous fluid), 혈관, 신경절세포(ganglion cells), 무축삭세포(amacrine cells), 수평세포(horizontal cells), 그리고 이극성 세포(bipolar cells)를 가로질러 빛의 광자가 지나가도록 아래 위가 바뀌어서 그리고 뒤쪽으로 향하도록 만들어져 있다(2005, p. 186).

윌리암즈(Williams)는 인간의 눈뿐만이 아니라, '다른 모든 척추동물의 눈들은 기능적으로 우둔한 망막의 위아래가 뒤집힌(upside-down orientation) 방향성을 가지고 있으며”, 그리고 '사실 기능적으로 뛰어난 배열은 오징어와 다른 연체동물(mollusks)의 눈에서 발견되는 것이다” 라고 덧붙였다 (1997, pp. 9-10). 이러한 주장에 대한 평가는, 그것은 고지식할 뿐만이 아니라, 철저하게 틀렸음을 보여주고 있다.


연구를 통한 발견

안과 의사들의 연구는 명백히 인간의 망막은 ‘전도 된(inverted, 거꾸로 된)’ 설계라고 불리는 것을 반드시 사용해야만 하는 이유를 보여주었다. 전도 된 망막은 들어오는 빛이 망막의 앞부분을 가로질러 광수용체에 도달할 때, 광수용체들이 빛으로부터 멀리 떨어져서 마주 대하게 한다. 반대 배치(광수용체들이 눈 앞에서 직면하게 되는)는 ‘전향 된(verted, 바로 된)’ 설계라고 불린다. 전도된 설계에 대한 많은 이유들 중의 하나는 광수용체 뒤에 다기능적이고 필수불가결한 구조인 망막색소 상피세포(retinal pigment epithelium)가 놓여있다는 것이다 (Martínez-Morales 2004, p. 766). 이러한 단층조직(monolayered tissue)은 망막에 의해 붙잡히지 않은 대부분의 빛을 흡수하는 검은 멜라닌 색소(black pigment melanin)를 함유하고 있다. 이러한 설계는 빛이 눈의 뒤쪽으로부터 망막으로 반사되는 것을 막아주는데 매우 유용하며, 만약 이러한 설계가 아니라면 시각 이미지의 선명도가 떨어지게 되는 것이다.


광수용체(간상세포와 원추세포)는 또한 광수용체에 혈액을 공급하는 맥락막(choroid) 위에 있는 색소 상피세포(pigment epithelium)와 가까이 접촉하기 위해서 눈의 앞쪽으로부터 멀리 떨어져서 마주 대해야만 한다. 이러한 배열은 시각(vision)이 불가능하게 됨 없이 간상세포와 원추세포로 흘러가는 ‘매우 중요한 분자인 레티날(retinal, 비타민 A 변형체)의 지속적인 흐름’을 허락하게 한다 (Kolb 2003, p. 28). 밀러에 의해 뛰어난 것으로 주장되고 있는 전향된(verted) 설계는 광수용체를 그것들의 영양, 산소, 그리고 레티날의 근원(맥락막)으로부터 멀리 떨어진 곳에 두게 할 것이다. 이러한 설계는 커다란 문제들을 유발할 수 있다. 왜냐하면 간상세포와 원추세포는 기능, 유지 및 교정에 있어서 매우 높은 대사(작용)를 위해 엄청난 양의 에너지가 필요하기 때문이다. 게다가 광독성(phototoxicity) 손상 때문에 간상세포와 원추세포는 대략 약 7일마다 완전히 교체되어야만 한다.

광수용체와 망막 상피세포(retinal epithelium)는 눈이 떠져있을 때 지속적으로 엄청난 양의 빛을 흡수한다. 빛은 대개 열로 바뀌기 때문에, 망막은 색소 상피세포 바로 뒤에서 맥락막의 혈액공급에 의해 다시 제공되는 매우 효과적인 냉각시스템을 가지고 있어야만 한다. 만약 색소 상피세포 조직이 망막의 앞쪽에(in front) 위치해 있다면, 시각은 심각하게 손상될 것이다. 또한 색소 상피세포로부터 망막을 멀리 두도록 하기 위해서 망막을 뒤집어놓게(reversing) 되면 광수용체가 기능에 필요한 영양분을 얻기 위해서 망막의 색소 상피세포 속에 끼워져 있어야만 하기 때문에 하나도 볼 수 없는 정도로까지 시각을 손상시킬 수도 있다.


이러한 설계는 망막이 시력을 위해 광수용체의 계속적인 교체(replacement)에 기인한 높은 대사 수준(high metabolism level)을 필요로 하기 때문에 너무나 위험하다. 결과적으로, 망막은 풍부한 혈액 공급을 필요로 하면서 몸의 다른 거의 모든 부분들보다도 더 많은 산소와 영양분을 사용한다. 전향된 설계는 높은 대사율에 필요한 혈액공급 때문에, 간상세포와 추상세포가 적절하게 기능하지 못하게 할 수도 있다. 만약 광수용체가 신경(neurons)의 앞쪽에 있다면, 혈액 공급은 수용체의 빛이 지나가는 통로에 바로 있어야 하든지, 아니면 그쪽 면에 있어야만 한다. 그렇게 되면, 시각에 사용되는 광수용체의 숫자가 현저하게 줄어들게 될 것이다.


무엇보다도, 망막의 신경 성분들이 광수용체 앞쪽에 위치하는 것은 몇 가지 이유로 시각적 장애를 만들어내지 않는다. 한 가지 이유는 신경 요소들이 빛의 한 파장보다도 짧게 떨어져 있다는 것이다. 결과적으로, 산란이나 회절이 매우 작거나 거의 일어나지 않으며, 빛은 마치 거의 완벽하게 투명한 것처럼 이 영역을 가로질러 지나간다. 두 번째 이유로, 현미경 하에서 관찰하면 대부분의 세포는 대개 투명하다. (이러한 이유로 세포의 여러 부분들을 잘 볼 수 있기 위해서는 Eosin-Y나 Hematoxylin 2와 같은 염색법이 요구된다). 결국, 망막 앞쪽에 있는 얇은 간상세포와 원추세포 층의 광차단효과(light blocking effect)는 거의 무시해도 될 정도이다.

가장 높은 해상도를 가지는 망막 부위에서, 광수용체 앞에 있는 신경단위(neurons)인 중심망막(central retina, 중심와(fovea)와 특히 중심소와(foveola))은 빛이 원추세포에 바로 도달하도록 하기 위해서 옆쪽으로 이동되어 있어서 가장 중요한 곳에서의 왜곡을 최소화 하고 있다. 고해상도를 가지는 황반(macula)은 또한 높은 해상도와 색각(color vision)을 얻도록 촘촘하게 밀집되어있는 원추세포를 사용한다. 망막 주변부는 해상도가 낮고 대부분 흑백시각을 위해 대부분 간상세포로 구성되어 있다.


이러한 설계는 뇌신경을 따라 엄청난 양의 데이터를 정확하게 전달하기 위해 가장 효과적인 방법이다. 이것은 마치 컴퓨터 파일의 전송을 용이하도록 하기 위해서 파일을 압축하고 푸는 것과 유사한 방식이다. 기능이 잘 돌아가기 위해서는 전달이 매우 빨라야만 한다. 왜냐하면 이미지는 TV 이미지의 화소(pixel)처럼 지속적으로 새로 재공급되어져야 하기 때문이다. 눈의 설계는 사실상 가시광선 스펙트럼의 물리적 한계에 이르기까지 최적화되어 있는 것으로 보인다 (Calkins 1986).


색소 상피세포 조직은 망막의 생존력과 활동성에 중요한 많은 다른 기능들을 수행한다. 한 가지는 그것이 주간에 각각의 광수용체 바깥 부분의 10% 정도의 양을 식균작용(phagocytosis)을 한다는 것이다. 그리고 지속적으로 그것의 모든 변형 배열(all-trans configuration)로부터 11-cis-retinal(비타민A 산화물)까지 발색단(chromophore)을 회복시킴으로써, 시각 색소의 합성과 재생을 허락하고 있다 (Dowling 1987, p. 198). 그것은 또한 외부의 혈액-레티날 장벽(blood-retinal barrier)의 일부분이고, 신경망막과 맥락막 사이의 물과 이온 흐름을 유지하도록 도우며, 유리기 손상(free radical damage)으로부터 보호해주며, 레티노이드 대사(retinoid metabolism)를 조절한다 (Martínez-Morales, et al., 2004, p. 766).


이 짧은 글에서, 단지 포유류의 망막에 존재하는 설계의 우수성에 대한 많은 이유들 중의 몇 가지만을 다루었다. 현재 우리의 지식은 망막의 설계가 단지 수 년 전에 이해했던 것보다 더 뛰어남을 보여준다. 정교한 설계에 대한 우리의 반응은 오만함보다 감사함이 더 적절하지 않겠는가!

Note : I wish to thank Jody Allen for her review of an earlier draft of this article.

 


*참조 : Is our ‘inverted’ retina really ‘bad design’?
http://creationontheweb.com/content/view/1683

Evolution’s theological underpinnings
http://creationontheweb.com/images/pdfs/tj/j21_2/j21_2_40-43.pdf

Dawkins’ eye revisited
http://creationontheweb.com/images/pdfs/tj/j15_3/j15_3_92-99.pdf

Fibre optics in eye demolish atheistic ‘bad design’ argument
http://creationontheweb.com/content/view/5214

An eye for detail : Why your eyes ‘jitter’
http://creationontheweb.com/content/view/5293/

The Prostate Gland–is it ‘badly designed’?
http://creationontheweb.com/content/view/5757/

Evolutionists Can't See Eye Design (2016, Acts & Facts. 45 (10)).
http://www.icr.org/article/9589

 

References

1.Bergman, Jerry. 2000. 'Is the Inverted Human Eye a Poor Design?' Journal of the American Scientific Affiliation. 52(1):18-30, March.

2.Calkins, Joseph L. 1986. 'Design in the Human Eye.' Bible-Science Newsletter. March. pp. 1-2.

3.Dowling, John E. 1987. The Retina: An Approachable Part of the Brain. Cambridge, MA: The Belknap Press of Harvard University Press.

4.Kolb, Helga. 2003. 'How the Retina Works.' American Scientist. 91:28-35.

5.Martínez-Morales, Juan Ramón, Isabel Rodrigo, and Paola Bovolenta. 2004. 'Eye Development: A View from the Retina Pigmented Epithelium.' BioEssays. 26:766-777.

6.Miller, Kenneth R. 1999. Finding Darwin's God: A Scientist's Search for Common Ground Between God and Evolution. New York: Cliff Street Books.

7.Shermer, Michael. 2005. Science Friction: Where the Known Meets the Unknown. New York: Henry Holt/Times Books.

8.Williams, George C. 1997. The Pony Fish's Glow and Other Cluesto Planand Purposein Nature. New York: Basic Books.

* Jerry Bergman is on the Biology faculty at Northwest State College in Ohio. Joseph Calkins is an Ophthalmologist in private practice, formerly Professor of Ophthalmology at Johns Hopkins University.



번역 - 길소희

링크 - http://www.icr.org/index.php?module=articles&action=view&ID=2476 ,

출처 - ICR, Impact No. 388, 2005

구분 - 3

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=2978

참고 : 2125|345|2899|2340|383|1492|54|5152|5827|5896|5158|4759|4661|4643|4565|4528|4124|1816|6118|6394



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2018-서울중구-0764 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광