LIBRARY

KOREA  ASSOCIATION FOR CREATION RESEARCH

연대문제

그랜드 캐년의 암석들에 대한 방사성 동위원소 연대측정

그랜드 캐년의 암석들에 대한 방사성 동위원소 연대측정 

(Radioisotope dating of rocks in the Grand Canyon)


       애리조나 북부의 그랜드 캐년에서의 고무보트 타기는 정말 짜릿하고 즐거운 경험이다. 협곡의 깊은 바닥에는 결정질 기반암이 험한 콜로라도 강 위로 찌를듯이 솟아있다. 공식 출판물들은 이 암석이 10억년 이상 되었다고 기록하고 있지만, 그러한 연대를 나타내는 데에 사용된 연대측정 방법들을 주의 깊게 조사해 보면 완전히 다른 이야기가 된다

Photo by Andrew A. Snelling
그림 1 : 그랜드 캐니언 내부 협곡의 결정질 암석들. 밝은 색의 화강암, 분홍색의 화강암, 그리고 더 어두운 색의 변성암이 보인다.


내부협곡의 절벽에 분명히 보이다시피 분홍색 화강암과 같은[1] 웅장한 밝은 색의 암석들이 더 어두운 색의 변성암에[2] 대비되어 두드러지게 나타나 있다 (그림 1과 2). 어두운 색의 암석(변성암)들은 화산암과 퇴적암이 과거의 격렬한 지질학적 융기(geologic upheavals) 동안에 열과 압력에 의해 변화(변성암으로)된 것이다.


그림  2: 그랜드 캐년 암석층의 지질학적 개념도. 내부 협곡의 결정질암은 대협곡 주벽의 수평 지층 아래에 있다 (Austin, 참고자료 13)

이 화산암층 중에 각섬변성암(amphibolites, 각섬암)이라고 불리는[3] 뚜렷한 어두운 색의 암석이 보인다 (그림 3). 이것은 원래 현무암 용암(basalt lava)이 흘러나온 것인데, 수십 미터의 두께가 된다 (그림 4). 일부 노두는 둥그런 베게용암(pillow) 구조로 되어있는데, 이것은 이들 현무암 용암이 물(water) 속에서 분출했음을 가리키고 있다.


암석들은 얼마나 오래 되었나?

방사성 동위원소 연대측정(radiometric dating) 방법에 근거하여, 수십억 년의 오래된 지구 연대를 믿고있는 지질학자들은 현무암 용암이 17억4500만 년 전에 분출하여[4] 약 17억 년 전에 변성되었다고[5] 말한다. 다수의 과학자들을 포함하여 많은 사람들이 이 날짜를 절대적인 진리로서 받아들인다. 그들은 동일한 한 암석에 대해 여러 방사성 동위원소 연대측정 방법들을 사용하여 연대를 측정한다면, 그 결과들이 전부 같은 연대를 나타낼 것이라고 생각한다. 그러나 이 믿음이 사실인지를 알아보기 위해서, 그랜드 캐년 깊은 곳에서 암석 표본들을 채취하여 연대측정을 실시해 본 결과 그것은 사실이 아니라는 것이 밝혀졌다.


Photo by Andrew A. Snelling
그림 3: 각섬변성암(amphibolites)이라고 불리는 변성된 현무암 용암류의 검은 노두.



Photo by Andrew A. Snelling
그림 4 : 가까이서 본 각섬변성암 노두. 1.5 m 폭의 원래의 현무암류 (지금은 수직으로 서있다)를 알아볼 수 있다.


각섬변성암 표본의 연대 측정


Photo by Andrew A. Snelling
그림 5 : 클리어 크릭(Clear Creek) 바로 상류에 있는 얇은 수직의 각섬변성암 층 (더 어두운 색의 암석).

그랜드 캐년을 통한 여러 번의 고무보트 여행 중 내부협곡의 여러 노두에서 ‘브라마(Brahma)’ 각섬변성암 표본들을 많이 수집했다.[6] 이 표본들 중 일부는 그림 5에서 보여진 단일 각섬변성암에서 수집한 7개의 표본도 있다.[7] 

모든 표본들을 두 곳의 명망있는 상업적 방사선 동위원소 연대측정 실험실에 보내어(의뢰하여) 연대를 측정했다.[8] 양쪽 실험실 모두 최신의 실험장비들을 사용하여 표준화된 최선의 방법을 사용하고 있으며, 요구한 동위원소들에 대한 정확하고 반복 가능한 측정 결과를 일상적으로 제공하고 있는 기관들이다. 

실험실들은 암석의 연대를 직접 측정하는 것이 아니라, 현재 암석에 포함되어 있는 동위원소의 양을 측정하였다. 이것은 굉장히 중요한 사항이다. 지질학자들은 이러한 측정치들에서 자원소(daughter isotope, 예를 들면 아르곤)와 그에 상응하는 모원소(parent isotope, 예를 들면 칼륨)의 양을 가지고 연대를 계산한다.

그러나 이 계산을 하기 전에, 암석이 형성될 당시에 최초에 들어있던 자원소와 모원소의 양을 가정할 필요가 있다. 여기에 더하여, 어떤 동위원소도 시간이 흐름에 따라 외부에서 들어오거나 외부로 빠져나가지 않았으며, 또한 방사능 붕괴율이 오늘날에 측정되는 붕괴율과 똑같이 과거에도 매우 느리고 일정했었다는 가정(assumptions)들이 필요하다.

문제는 우리가 이러한 가정들이 합리적인 것인지를 모른다는 것이며 (왜냐하면 이것들은 증명할 수가 없기 때문이다), 특히 변성암의 경우에는 더욱 그러하다. 그러나 지질학자들은 연대측정 결과를 적절히 해석하여 이 문제점을 극복한다. 예를 들면, 계산된 연대를 변성작용이 발생한 연대로 보기도 하고, 아니면 최초의 화산암(또는 퇴적암)의 생성연대가 될 수도 있으며, 또는 둘 중의 중간 연대 혹은 다른 연대로 볼 수도 있다.


다른 연대측정 방법들에 의한 연대들은 서로 일치하지 않았다.

동일한 지층에서 수집한 표본들을 동일한 연대측정 방법을 사용하여 연대 계산을 해본 결과 그 차이가 크게 났는데, 심지어 같은 용암류, 같은 노두의 가까운 위치에서 수집한 표본의 경우에서도 마찬가지였다 (아래의 글 ‘연대 계산’ 참조). 이 표본들은 모두 같은 연대가 나와야 함에도 불구하고, 연대측정 결과들은 서로 비슷하지도 않고 전혀 달랐다.

게다가, 그랜드 캐년 암석들에 대해 세 가지의 다른 아이소크론(isochron) 방법들을 사용하여 계산한 연대도 역시 일치하지 않았다. 심지어 오차 범위를 고려했을 때에도, 세 가지 연대측정 방법들은 설명할 수 없을 정도로 완전히 다른 연대를 나타내었다.

정말로, 아이소크론 연대들은 모두 이론적 지질사건들의 어느 것과도 (원래의 용암분출이나, 이후의 변성작용 시점들과) 일치하지 않았다. 분명히, 계산된 연대들은 어떤 사건의 연대를 추정하는 데에 전혀 쓸모가 없었다.


그러한 결과는 예외라기 보다는 일반적이었다.

어떤 이들은 이 모순되는 연대측정 결과를 예외적인 결과로 보고 대단치 않게 생각하고 싶어할지도 모른다. 그들은 암석의 변성작용과 그 이후의 변화, 특히 침식과 풍화작용에 의한 불확실성 때문이라고 주장할지도 모른다. 그러나 이러한 결과는 예외적인 결과가 아니다. 이 결과들은 그랜드 캐년 암석들의 방사성 동위원소 연대측정에서 반복적으로 실패한 것을 다시 한번 확인한 것이었다.[9, 10]

단지 창조론자들만이 이 연대측정의 실패를 발견하고 있는 것이 아니다. 다른 지질학자들도 동일한 암석 단위에 다른 방법으로 방사성 동위원소 연대측정을 실시한 결과가 서로 일치하지 않는다고 보고하고 있다.[11] 그러나 그들의 보고서에서 그 지질학자들은 비정상적인 자원소의 양을 둘러대서 넘어가려는, 근거가 희박한 해석을 하고 있다. 그들은 방사성 동위원소 연대측정 방법이 신뢰할만한 연대측정 방법이 될 수 없다는 명백한 결론을 회피하려고 애쓰는 것 같다.[12]


결론

의심의 여지없이 지구의 수십억년 연대를 측정하는 방법으로 오랫동안 자랑해 온 방사성 동위원소 연대측정 방법은 그랜드 캐년 암석들에 대해서 반복적인 그리고 의미있는 절대적 연대를 제공하지 못하고 있다. 같은 동위원소 연대측정 방법 내에서 뿐만이 아니라, 다른 동위원소 연대측정 방법들 사이에서 존재하는 커다란 차이는 단일 노두의 표본에서조차 일반적이다. 사실 주의깊게 살펴보면, 이 방사성 동위원소들의 증거는 그 암석들이 오래되지 않았다는 견해와 일치한다 (아래의 글 ‘과거에 가속화된 방사능 붕괴’ 참조)

이러한 결과는 동일과정설(균일설)적 지질학과 진화론적 생물학의 기초가 되고있는 장구한 연대 개념에 통렬한 타격이 되고있다. 이제 그랜드 캐년의 깊은 곳에 위치한 현무암 용암류는 창조 주간에 해저에서 분출되었고, 창조 제3일 째에(단지 6,000여년 전) 마른 땅이 드러나는 융기 동안에 변성작용을 받았다고 보는 것이 전적으로 가능할 수 있다.[13]


그림 6. 클리어 크릭(Clear Creek) 바로 상류에 있는 얇은 각섬변성암의 평면도(그림 5 참조). 위치(높이)에 따라 표본들이 채취되었고, K-Ar 연대가 측정 계산되었다.  


그림 7. 브라마 각섬변성암(Brahma amphibolites)에 대한 아이소크론 도표. (A) Rb-Sr (B) Sm-Nd (C) Pb-Pb. 십자와 타원은 자료 값들(표본 분석)이고, 그들의 크기는 ± 분석오차에 비례한다


그림 8. 브라마 각섬변성암의 연대측정에 사용된 다른 방사성 동위원소들에 대한 현재의 반감기와 아이소크론 연대들.

 


연대 계산


그랜드 캐년에서 수집한 27 점의 각섬변성암 표본들을 소위 칼륨-아르곤(K-Ar) 방사성 동위원소 연대측정 모델로 계산한 결과[1], 4억510만 년 ± 1,000만 년에서 25억7420만 년 ± 7300만 년 사이의 결과를 나타내었다. 이것은 비슷한 연대를 나타내야 하는 표본들에서 6 배의 차이가 난 것이다. 

오차 범위(±로 표기된 숫자)가 연대 결과치와 비교하여 볼 때 작음을 유의해서 보라. 그것들은 또한 표본들 사이의 연대 오차와 비교해서도 작은 값이다. 이것은 그만큼 실험실 측정은 정밀했다는 뜻이다. 그러나 결과가 보여 주듯이, 오차추정치는 암석표본 자체의 연대측정치가 정확한지 여부와는 상관이 없었다.

게다가, 클리어 크릭(Clear Creek) 상류의 작은 각섬변성암에서 채취한 7 점의 표본들은동일한 현무암 용암류의 변성암에 속하므로 연대측정치가 매우 비슷하게 나와야 함에도 불구하고, 칼륨-아르곤 연대측정치가 10억6040만 년 ± 2800만 년부터 25억7420만 년 ± 7300만 년까지의(그림 6) 결과를 나타내었다. 여기에는 단지 84cm 떨어진 두 표본에서 나온 칼륨-아르곤 연대측정치가 서로 매우 다른 12억530만 년 ± 3100만 년과 25억7420만 년 ± 7300만 년을 나타낸 결과를 포함하고 있다. 분명히 칼륨-아르곤(K-Ar) 연대를 계산하는 가정들에 문제가 있는 것이다.

칼륨-아르곤 방법 이외의 동위원소 연대측정법인 루비듐-스트론튬(Rb-Sr), 사마륨-네오디뮴(Sm-Nd), 납-납(Pb-Pb) 방법 등으로 아이소크론(isochrons)을 이용하여 암석들의 연대를 계산해 보았다.[2] 표본마다 세 가지 방법으로 세 개의 연대측정치를 얻었다.

제일 좋은 아이소크론 도표(isochron plots)는 최적직선(straight line of best-fit)이 각 데이터 점들의 분석오차(± 값들) 이내에 들 때이다. 일반적으로 측정치들이 많으면, 추세에서 벗어난(직선상에 위치하지 않는) 일부 측정치들은 무시되어진다. 지질학자들은 이것을 과거의 어떤 지화학적 변질작용이 그 표본에서 방사성 동위원소를 교란했다고 하며 당연시한다.

이들 각섬변성암들에 대한 최적 아이소크론 도표는 전체 27개 중 19개 표본들로부터 루비듐-스트론튬(Rb-Sr) 연대로 12억4000만 년 ± 8400만 년, 21개 표본으로부터 사마륨-네오디뮴(Sm-Nd) 연대로 16억5500만 년 ± 4000만 년, 20개 표본으로부터 납-납(Pb-Pb) 연대로 18억8300만 년 ± 5300 만 년이었다.[3]

데이터들에 대한 이들 아이소크론 연대들의 뛰어난 통계적 적합성 때문에, 인용된 오차범위 (± 값)가 상대적으로 적음을 주목하라. 그럼에도 불구하고, 세 가지 연대측정 방법들은 아이소크론 불일치가 뚜렷하여, 매우 다른 연대를 나타내고 있었다. 계산된 오차범위를 고려하더라도, 다른 방사성 동위원소 연대측정 방법들 사이에서 도저히 용납이 되지 않을 정도의 크게 상이한 결과가 나오고 있음을 그림 8은 보여주고 있다.


References

1. A model age is calculated by assuming a value for the original isotopic composition of the molten liquid from which the rock solidified. In the case of K-Ar, it is assumed that when the rock formed, there was no Ar in it derived from radioactive decay of K.
2. An isochron is a graphical plot of the isotopic compositions of the samples. It allows an isochron age to be calculated from a straight line plotted through the graph of the results. The Isoplot computer program, developed by Dr Ken Ludwig at the University of California Berkeley Geochronology Center, was used. See: Ludwig, K.R., Isoplot/Ex (Version 2.49): The Geochronological Toolkit for Excel, University of California Berkeley, Berkeley Geochronology Center, Special Publication No. 1a, 2001. The method effectively requires multiple assumptions, namely that the initial isotopic ratio of each sample was the same as the ratio of every other sample in the group.
3. It is important to note that geologists routinely use only 6–10 samples for plotting isochrons and calculating isochron ages, so the isochrons obtained here from 19–21 samples are exceptional. Furthermore, all the results not included in the isochron ‘age’ calculations still plotted very close to the lines of best fit.


과거에 가속화됐던 방사능 붕괴


RATE 프로젝트 연구는[1] 방사성 동위원소 붕괴률이 가까운 과거에 전 세계적인 격변적 사건이 발생하였을 때 가속화되었다는 많은 증거들을 발견했다.[2] 이 증거는 서로 다른 방사성 동위원소 방법들 간의 연대측정 결과가 불일치되는 추세도 포함하고 있다.[3-6]

예를 들어, 만일 가속화된 방사성 동위원소 붕괴가 발생했었다면, α-붕괴 방사성 동위원소는 β-붕괴 방사성 동위원소보다 오래된 아이소크론 연대를 나타낼 것이다. 그런데 이것이 바로 그랜드 캐년의 브라마 각섬변성암들의 연대측정 결과들이 보여주는 추세였다 (그림 8).

서로 다른 방사성 동위원소 쌍들은 같은 지질사건(암층)의 연대를 추정하도록 되어 있기 때문에, 상이한 연대측정치들은 모원소들이 같은 기간에 다른 붕괴율로 붕괴했음을 의미하는 것이다. 바꾸어 말하면, 모원소들의 붕괴가 서로 다르게 가속화되어, 더 많이 가속화된 붕괴(α-붕괴를 하는 원소들)는 더 오래된 연대를 나타낸다는 것이다. 이것은 다시 한번 이론과 일치하였다.  

창세기 홍수 동안에 방사성 동위원소 붕괴가 가속화되었다면, 방사성 동위원소 붕괴율에 의한 연대측정 시계들이 수십억 년이라는 암석들의 연대측정 결과를 나타내었을 때, 명백히 그 결과는 신뢰할 수가 없는 것이다. 실제로, 수십억 년의 오래된 연대를 나타내는 방사성 동위원소의 붕괴율은 과거의 특정 사건 기간 동안에 엄청나게 가속화되어, 현재의 측정치보다 수백만 배까지도 빨랐었음을 보여주는 몇몇 증거들이 있다.[7-9] 따라서, 암석들이 수천년 밖에 되지 않았다는 견해도 전적으로 가능할 수 있다.


References

1. RATE is a cooperative research venture between leading creationist geologists and physicists of the Institute for Creation Research and the Creation Research Society of USA into Radioisotopes and the Age of The Earth.
2. Vardiman, L., Snelling, A.A. and Chaffin, E.F. (Eds.), Radioisotopes and the Age of the Earth: Results of a Young-Earth Creationist Research Initiative, Institute for Creation Research, Santee, California, and the Creation Research Society, St Joseph, Missouri, in preparation, 2005.
3. Austin, S.A. and Snelling, A.A., Discordant potassium-argon model and isochron ‘ages’ for Cardenas Basalt (Middle Proterozoic) and associated diabase of eastern Grand Canyon, Arizona; in: Walsh, R.E. (Ed.), Proceedings of the Fourth International Conference on Creationism, Creation Science Fellowship, Pittsburgh, Pennsylvania, pp. 35–51, 1998.
4. Snelling, A.A., Austin, S.A. and Hoesch, W.A., Radioisotopes in the diabase sill (Upper Precambrian) at Bass Rapids, Grand Canyon, Arizona: An application and test of the isochron dating method; in: Ivey, R.L. Jr., (Ed.), Proceedings of the Fifth International Conference on Creationism, Creation Science Fellowship, Pittsburgh, Pennsylvania, pp. 269–284, 2003.
5. Austin, S.A., Testing the assumptions of radioisotope dating, using whole-rock and mineral isochron methods by K-Ar, Rb-Sr, Sm-Nd, and Pb-Pb radioisotope pairs; in: Vardiman et al., ref 2.
6. Snelling, A.A., Isochron discordance and the role of inheritance and mixing of radioisotopes in the mantle and crust; in: Vardiman et al., ref 2.
7. Humphreys, D.R., Young helium diffusion age of zircons supports accelerated nuclear decay; in: Vardiman et al., ref. 2.
8. Snelling, A.A., Radiohalos in granites: evidence for accelerated nuclear decay; in: Vardiman et al., ref. 2.
9. Baumgardner, J.R., 14C evidence for a recent global Flood and a young earth: in; Vardiman et al., ref. 2.



References

1. E.g. the Zoroaster Granite. Geological formations have names for ease of identification.
2. The Vishnu Schist and other rocks of the Granite Gorge Metamorphic Suite. See Karlstrom, K.E., Ilg, B.R., Williams, M.L., Hawkins, D.P., Bowring, S.A. and Seaman, S.J., Paleoproterozoic rocks of the Granite Gorges; in: Beus, S.S. and Morales, M. (Eds.), Grand Canyon Geology, 2nd edition, Oxford University Press, New York, pp. 9–38, 2003.
3. Belonging to a rock unit called the Brahma Schist.
4. 1741–1750 million years (Ma) based on U-Pb (uranium-lead) ‘dating’ of ‘original’ zircon grains in metamorphosed felsic (granitic) volcanic rock layers within the Brahma and Rama Schists. See Ilg, B.R., Karlstrom, K.E., Hawkins, D.P. and Williams, M.L., Tectonic evolution of Paleoproterozoic rocks of Grand Canyon: Insights into middle-crustal processes, Geological Society of America Bulletin108:1149–1166, 1996, and Hawkins, D.P., Bowring, S.A., Ilg, B.R., Karlstrom, K.E. and Williams, M.L., U-Pb geochronologic constraints on the Paleoproterozoic crustal evolution of the Upper Granite Gorge, Grand Canyon, Arizona, Geological Society of America Bulletin 108:1167–1181, 1996.
5. 1690–1710 Ma based on U-Pb ‘dating’ of minerals (monazite, xenotime and titanite) that formed in the overlying Vishnu Schist and underlying Rama Schist during the metamorphism. See Hawkins et al., ref. 4, and Hawkins, D.P. and Bowring, S.A., U-Pb monazite, xenotime, and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of Paleoproterozoic migmatites from Grand Canyon, Arizona, Contributions to Mineralogy and Petrology 134:150–169, 1999.
6. These samples were collected with a Scientific Research and Collecting Permit issued by the Grand Canyon National Park, as part of the RATE (Radioisotopes and the Age of The Earth) project.
7. 50 m (160 ft) long and 2 m (7 ft) wide, outcropping just upstream from the mouth of Clear Creek at river mile 84 (measured from Lees Ferry).
8. ‘Whole rock’ samples were analyzed in all cases—K-Ar at Activation Laboratories, Ancaster, Ontario, Canada; Rb-Sr, Sm-Nd and Pb-Pb at the PRISE Laboratory, Research School of Earth Sciences, Australian National University, Canberra, Australia.
9. Austin, S.A. and Snelling, A.A., Discordant potassium-argon model and isochron ‘ages’ for Cardenas Basalt (Middle Proterozoic) and associated diabase of eastern Grand Canyon, Arizona; in: Walsh, R.E. (Ed.), Proceedings of the Fourth International Conference on Creationism, Creation Science Fellowship, Pittsburgh, Pennsylvania, pp. 35–51, 1998.
10. Snelling, A.A., Austin, S.A. and Hoesch, W.A., Radioisotopes in the diabase sill (Upper Precambrian) at Bass Rapids, Grand Canyon, Arizona: An application and test of the isochron dating method; in: Ivey, R.L. Jr., (Ed.), Proceedings of the Fifth International Conference on Creationism, Creation Science Fellowship, Pittsburgh, Pennsylvania, pp. 269–284, 2003.
11. Musaka, S.B., Wilson, A.H. and Carlson, R.W., A multielement geochronologic study of the Great Dyke, Zimbabwe: Significance of the robust and reset ages, Earth and Planetary Science Letters 164:353–369, 1998.
12. Some might argue that these radio-dating methods still give ‘ages’ of many millions of years, as required by evolutionists. However, there is irrefutable evidence that the rates of radioactive decay of these ‘dating’ isotopes were grossly accelerated in the past, being up to millions of times faster than their currently measured rates (see box, ‘Accelerated radioactive decay in the past’, above).
13. Austin, S.A. (Ed.), Grand Canyon: Monument to the Catastrophe, Institute for Creation Research, Santee, California, ch. 4, pp. 57–82, 1994


*참조 : The failure of U-Th-Pb ‘dating’ at Koongarra, Australia
http://creationontheweb.com/content/view/1780


번역 - 미디어위원회

링크 - http://www.answersingenesis.org/creation/v27/i3/canyon.asp

출처 - Creation 27(3):44–49, June 2005

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=3351

참고 : 2961|2964|1933|1797|2882|2843|2876|2251|422|536|2719|2605|2958|482|1899|483|1359|2310|2593|2367|570|571|2189|473|313|2279|4277|4102|3351|3326|3781|3775|4273|4077|3702|4074|4271|4190|4435|4693|4838|4992|5240|5243|5377|5053|5367|5531|5541|5672|5697|5718|5842|6030|6076|6104|6228|6223|6240|6255|6413|6415|6422|6431|6462|6507|6508



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광