광합성의 진화에 대한 밝은 빛[1]

광합성의 진화에 대한 밝은 빛 [1]

 (Shining light on the evolution of photosynthesis)


   광합성이 진화되려면 일련의 생화학적 반응들이 필요한데, 이것이 존재하기 위해서는 쓸모없는 중간체들을 만들어내는 복잡한 여러 효소들이 먼저 진화되어야 한다. 엽록소 생성에 필요한 효소들 중, 광독성이 있는 물질들을 잡아 변형시키며, 아포단백질로 넣어주는 다음 단계의 효소가 아직 진화되지 않았다면, 그러한 중간체들은 세포에 치명적이다. 증거들은 다음과 같다.

a) 산소의 독성을 제거하는 복합체가 진화되기 이전에, 바닥상태 산소의 출현은 세포에게 치명적일 것이다.

b) 유사한 단백질로부터 원하는 효소들을 만들 수 있도록 유전자가 진화될 확률을 계산해보면, 그런 우연한 기회라는 것은 거의 있을 수 없다.

c) 필요도 없는 단백질의 생성은 세포에게 사형선고와 같다.

d) ATP* 합성효소의 모터는 단계적으로 진화될 수 있는 성질의 것이 아니다.

e) Rubisco 복합체는 진화될 수도 없고, 진화되지도 않았을 것이다.



  과학을 자연주의적 가정, 즉 ‘모든 물질과 에너지는 존재해왔거나 존재할 것이다’ 라고 정의한다면 광합성 역시 진화해 온 것이어야 한다. ‘지적존재에 의해 설계된 것이다’ 라고 하는 유일한 합리적 대안은 ‘과학’이라는 정의에 어긋난다고 할 테니 말이다. 정의에 따른다면 광합성에 관계되는 거대하고 복잡한 체계가 우연히 생겨났다는 것이다. 그러나 사람이 어떤 단어를 정의한다고 해서 객관적인 실재 영역까지 관할할 수 있는 것은 아니다. 진실은 단어에 대한 인간의 정의와 전혀 무관하며, 이는 과학의 정의라 해도 마찬가지다. 이 논문은 ‘진화는 광합성 세균이나 녹조류, 고등식물에 존재하는 광합성 과정을 만들어낼 능력이 없으며, 따라서 지적으로 설계된 것임에 틀림없다’는 것을 명제로 삼고 있다.

(광합성 계나 캘빈 회로의 복잡함을 잘 아는 사람은 77쪽에 있는 ‘진화의 문제점’ 영역으로 넘어가길 바란다. *는 이 글에서 처음 나온 어휘이며, 뒤의 용어해설에서 뜻을 풀이하였다).


광합성은 어떻게 이루어지는가? : 기본 원리


  광합성을 하는 진핵생물에는 엽록체(chloroplasts)라고 하는 별도의 세포 소기관이 있어 여기에서 광합성이 이루어진다 (그림 1). 녹조류인 클로렐라(Chlorella)는 하나의 커다란 엽록체를 가지고 있으며, 7천만 개의 세포를 가지고 있는 식물의 잎 하나에는 약 50억 개의 엽록체가 들어있다. 또 각각의 엽록체에는 약 6억 개 정도의 엽록소(chlorophyll) 분자가 있다. 일반적으로 한 엽록체 당 250-300 여개의 엽록소 분자가 흡수된 빛 에너지를 주위 색소들을 거쳐 그들이 속한 광계(photosystem)*의 반응중추에 있는 특별한 한 쌍(special pair)의 엽록소 분자에게 전달하는 역할을 한다.1


  엽록체는 보통 두 개의 지질층으로 둘러싸여 있다. Lamellae라고 하는 엽록체의 내막에 단백질이 존재하는데, 녹조류나 고등식물의 경우 엽록소가 이 단백질에 결합되어 있고, 여기서 광합성의 명반응(light reactions)*이 일어난다. 틸라코이드의 외부영역인 스트로마에는 액체로 채워져 있는데, 여기에 존재하는 수용성 효소들에 의해 CO2로부터 최종적으로 당이 만들어지는 탄소환원 반응이 이루어진다.2 엽록체 내막의 대부분은 막으로 된 주머니(틸라코이드)가 차곡차곡 쌓여져 있는 모양인 그라나의 막과 밀접하게 연결되어 있다. 어떤 일부의 막 주머니는 스트로마 내부에 하나의 줄처럼 뻗어져 나와 있기도 하는데, 이것을 ‘스트로마 라멜라’ 라고 한다(그림 1). 광합성에 관여하는 단백질 중 틸라코이드 막에 삽입되어 있는 부분은 대부분 소수성(물을 밀어내는 성질)이며, 내부공간(lumen*)인 스트로마로 뻗어 나온 부위는 일반적으로 친수성(물을 끌어당기는 성질)이다. 

그림 1. The chloroplast. (a) A cutaway vieew of a plant cell showing the relative size and orientation of the chloroplasts. (b) A chloroplast as seen by electron microscopy (TEM). (c) A schematiic illustration of chloroplast structure, (d) A cutaway of a granum. Figure modified slightly form Becker, W.M., Kleinsmith, L.J. and Hardin, J., The World of the Cell, 4th ed., Chapter 4, p. 91.64 Copyright © 2000 by Addison Wesley Langman Inc., Reprinted by permission fo Pearson Education Inc.


  광합성을 하는 세균이나 진핵생물은 광합성에 필요한 빛 에너지를 빛 포집장치인 안테나 복합체*에 모아놓는다. 광합성을 하는 진핵생물의 광계에는 엽록소 a와 b를 갖는 두 종류의 반응중추(reaction centres)가 있는데, 이들 각각은 고유의 안테나 단백질 복합체를 가지고 있다. 제 2광계(photosystem II, PSII)에서 빛을 포집하는 복합체 단백질은 막을 가로지르는 3개의 나선구조(α-helix*)로 이루어진 하나의 막관통 색소단백질 복합체의 구조를 하고 있음이 밝혀졌다. 이 복합체에는 약 15개의 엽록소 a, b와 여러 개의 카로티노이드가 존재하고 있다(그림 2). 2개의 긴 카로티노이드가 복합체 중심부에 X자를 이루고 있다.3 제 1광계(PSI)가 처리하기에는 너무 많은 에너지가 제 2광계(광합성에 처음으로 이용되는 광계임)로 들어올 경우에는, LHCII복합체가 PSI을 돕기 위해 막으로 이동할 수 있다.4 이러한 안테나 복합체는 틸라코이드 막에 있는 반응중추 주위에 모여 있어서 여기(勵起)된 전자의 에너지를 반응중추로 전달하는 역할을 한다. 제 1반응중추의 안테나 복합체는 실제로 반응중추의 일부이기도 하다.5

그림 2. Chlorophylls a and b (right) and B Carotene (above). In chlorophyll a, (R+CH3), and in chlorophyll b, (R=CHO).


  광자가 단일결합과 이중결합이 교대로 존재하는 conjugated double bond에 존재하는 전자를 자극시키면, 빛 에너지는 안테나 복합체에 있는 색소분자에 포집된다. 각각의 색소들은 특정 파장에서 광자를 흡수한다. 안테나 복합체의 색소분자들은 일반적으로 자신들이 흡수한 에너지를 약간 더 낮은 에너지 준위(더 긴 파장)에서 흡수하는 다음 단계의 색소들에게 순차적으로 전달시킨다. 카로티노이드 색소들은 여기된 에너지를 엽록소 b에게 넘겨주면, 엽록소 b는 최대흡수파장인 670nm인 엽록소 a에게, 그리고 이것은 680nm에서 흡수하는 최초의 반응중추(RCII)의 엽록소 한 쌍에게 에너지를 전달시킨다. 이러한 시스템은 광화학(전자전달, 그림3)에 사용하기 위해 광자에너지의 95-99%를 회수하며, 각 단계에서 소량의 에너지 손실이 있을 뿐이다. 전자의 전달은 비가역적으로 일어난다.6


  광자가 색소분자로 흡수되면, 낮은 에너지 오비탈에서 반대방향으로 회전하며 쌍을 이루던 전자 중 하나가 높은 에너지 오비탈로 뛰어오르면서 각 전자들은 쌍을 이루지 않게 된다(그림 4).7 여기된 에너지가 반응중추로 갈 때, 전자의 이동에 의해 전달되는 것이 아니라, 마치 소리굽쇠의 한 쪽을 치면 다른 쪽으로 에너지가 전달되듯이 공명을 이루며 전달되는 것으로 여겨진다.8 전자의 이동은 분자내 화학적 변화를 수반하지만, 에너지 전달은 단순한 물리적 과정이다.

  이 과정의 마지막 단계는, 제2 반응중추에 있는 특별한 한 쌍의 엽록소(P680) 중 하나에서 전자 하나가 여기하는 것이다. 여기된 전자는 pheophytin 분자로 전달되는데, 이것은 (변형된) tetrapyrrole 분자 중앙에 있는 마그네슘이 두 개의 양성자로 치환된 것으로, 엽록소와 유사한 분자이다. RCII에서 P680이 환원된 후에는 반응들이 매우 빨리 진행되어, 얻은 에너지가 열로 손실되는 것을 막는다. Pheophytin으로 잃어버린 전자는 반응중추 단백질에 있던 타이로신(Y)으로부터 다시 채워지는데, 이 전자는 4개의 망간 원소가 정교하게 배열된 시스템에 있던 물분자에서 유래된 것이며, 이후 빛에 의해 점점 더 산화되지만, 이 기작은 밝혀지지 않았다.9 이러한 시스템은 전자를 얻기 위해 물분자도 쪼갤 수 있는 것으로, 어떠한 생물학적 시스템보다 가장 강력한 산화제로 작용한다.10 

그림 3. Energy movement within the antenna complex is by resonance transfer, a prely physical process, to the 'special pair` of chlorophyll molecules in the reaction centre, where the energy captured is used in the transfer of electrons from chlorophyll to pheophytin, and on to plastoquinones A and B. The original electron source in higher plants is water.


  Pheophytin은 새로 얻은 전자를 plastoquinone에게 전달하고, 이 전자는 두 번째 plastoquinone으로 재빨리 이양된다(그림 5). 두 번째 quinone이 첫 번째 quinone에게 전자 2개를 받으면 스트로마에서 양성자 두 개를 꺼내서 분리하고, 산화된 cytochrome b6f 복합체로 전자를 전달한다. 틸라코이드 내부 공간(lumen)으로 2개의 양성자가 들어가면서 cytochrome 복합체로 전자가 전달되는 것이다. 두 전자 중 하나는 철황단백질을 거쳐 lumen 쪽에 있는 cytochrome f와 plastocyanin으로 가고(그림 3 참조), 다른 하나는 2개의 cytochrome b를 거쳐 산회된 plastoquinone으로 가서 재환원된다. Plastoquinone은 스트로마에서 양성자 2개를 더 꺼내어 위의 과정을 반복하는데, 이 결과로 양성자는 스트로마에서 lumen으로 이동하게 된다. Rieske 철황단백질과 cytochrome f를 거쳐서 온 전자는 plastocyanin에 의해 제 1광계(PSI)로 운반되고, 거기서 제 1반응중추(RCI)에 있는 특별한 엽록소 한 쌍(P700)을 환원시킨다. 이 새로운 전자는 RCI에서 빛에너지로 충전되어 엽록소 a(그림 611에서 A0로 표시됨)로 전달된 후, 다시 비타민 K1(quinone, A1으로 표기)과 철황함유의 일련의 단백질 복합체들을 지나 ferredoxin으로 전달된다.12 Ferredoxin은 ferredoxin-NADP reductase에 의해 NADP+를 NADPH로 환원시킬 수 있다.12


  PSII는 물에서 전자를 빼낼 수 있는 매우 강력한 산화제이지만, NADP+를 NADPH로 환원시키지는 못한다. PSI은 매우 강력한 환원제를 만들어 ferredoxin과 NADP+를 환원시키게 한다. 그러나 위 두 시스템 모두는 단독으로는 어떠한 의미 있는 일도 할 수가 없다. 마치 ‘모든 것이 작동하지 않으면 어떤 것도 만들어지지 않는다(nothing works unless everything works)’는 말과 같다. Hill과 Bendall13이 Z자 모양(Z scheme)이라 명명한 이상의 전 과정(그림 6)을 통해 고에너지 분자인 NADPH가 생성된다. 이 에너지는 캘빈 회로의 환원과 재생산 반응에 이용되며(그림 7), 캘빈 회로를 통해 CO2가 유기물질에 결합되어 3당류가 만들어진다. 

그림 4. Diagram of orbital occupation for the ground and excited (singlet) states of reaction centre chlorophyll. Arcing arrows stand fot electrons og opposite spin direction. In the ground state, the chlorophyll is a poor reducing agent vecatse it can only lose an electron from a low energy orbital, and a poor oxidizing agent because it can only accept electrons in a high energy orbital. In the excited state, an electron can be lost from a high energy orbital, and the molecule becomes an extremely poweful reducing agent. This means that the P680 and P700 excited state molecules have a very negative redox potential. They 'want' to give away electrons very badly.


  이 외에도 이상의 반응을 통해 또 다른 에너지 축적이 이루어지는데, 그것은 틸라코이드 lumen으로 양성자가 축적된다는 것이다. 양성자는 PSII에서 물이 쪼개질 때 축적되며, 환원된 plastoquinone인 hydroquinone이 cytochrome b6f에서 산화될 때 lumen에 남게 된다. Lumen에 축적된 양성자들은 ATP 합성효소에 의해 다시 스트로마로 돌아가게 된다(그림 7). ATP 합성효소의 CF0 복합체는 막을 통과하는 통로를 만들어준다. 또 ADP와 무기인산염의 결합부위와, ATP의 결합부위는 CF1 복합체의 3α, 3β 하부구조를 각각 이루며, 이것들은 오렌지 조각들처럼 서로 교대로 존재하는 모양을 하고 있다. CF0 복합체 중 빈 틈으로 양성자가 들어가고 나오면서 에너지가 생성되는데, 이 에너지로 αβ하부구조들 내에서 비대칭구조인 χ 단백질이 회전한다는 사실이, 위의 모델을 뒷받침하고 있다. β하부구조의 모양이 변형되면서 ADP와 무기인산염이 결합되고, 하부구조들이 닫히면서 기질들 간에 결합이 생기면서 ATP가 생성되는 것으로 보인다.14 하부구조들이 다시 열리면 ATP가 방출되게 된다.14


  양성자 4개가 위의 복합체를 통과할 때마다 1개의 ATP가 생성된다.15 명반응에서 생긴 ATP와 NADPH는 캘빈 회로의 환원반응에서 이용된다.


캘빈 회로(The Calvin cycle)


  명반응에서 생긴 ATP와 NADPH에 저장된 에너지를 이용하여 3개의 탄소로 된 3당류를 합성하는 탄소고정반응(캘빈 회로)은, 다음 3 단계에 걸쳐 이루어진다(그림 8).

․Ribulose-1,5-bisphosphate(RUBP)의 carboxylation 이후 이것은 3-phosphoglycerate(PGA) 2분자로 나뉘어진다.

․PGA가 3당류로 환원. CO2 한 분자가 결합될 때마다 NADPH와 2분자와 ATP 2분자가 소모된다.

․Ribulose-1,5-biphosphate가 다시 만들어짐. 탄소가 하나씩 결합될 때마다 ATP 한 분자씩 소모된다.16

그림 5. Linear electron transport system of photosynthesis. Photosystem II simplified from Hankamer et al, 65 © 1997 by Annual Reviews <www.annualreviews.org>. Plastocyanin dissociation and movement simlified, because PSI is predominantly in the stroma lamellae.


  그림 9는 캘빈회로의 반응들을 좀더 상세히 나타낸 것이다. 그림 9의 첫 번째 반응은 rubisco라고도 부르는 ribulose-1,5-bisphosphate carboxylase/oxygenase 효소에 의해 촉매되는 매우 중요한 반응이다. Ribulose-1,5-bisphosphate(RUBP)의 두 번째 탄소에 무기 CO2가 공유결합 되는데, ATP를 필요로 하지 않는 이 반응은 5 단계에 걸친 복잡한 과정을 거치며,17 최종산물로 2분자의 3-phosphoglycerate(PGA)가 생성된다. Phosphoglycerate kinase가 ATP를 사용하여 이 분자들을 인산화시켜 1,3-bisphosphoglycerate로 만들면, 여기에 NADP;glyceraldehyde-3-phosphate dehydrogenase가 NADP를 이용하여 작용, 최초의 3당류인 glyceraldehyde-3-phosphate를 생성하게 된다.18


  이렇게 생성된 3당류 인산염 중 1/6은 엽록체 내부에서 녹말을 만드는데 이용되거나 엽록체 외부로 배출되어 서당(sucrose) 합성에 이용된다. 나머지 5/6는 식물이 CO2를 고정화시키는데 필요한 분자인 RUBP를 재생산하는데 이용된다. 이상의 재생산 반응에서 눈여겨볼 것은, (탄소가 하나인 화합물을 제외하면) 모든 분자들이 가능한 한 최소의 탄소 수를 유지하면서 3개의 세트를 이용하여 5개의 세트를 만들어내는데, 이러한 과정이 매우 간단한 방식으로 이루어진다는 것이다.19


  이론적으로는 소량의 RUBP가 만들어질 수도 있지만, 그림 9에서 녹색으로 표시된 3개의 효소 중 하나라도 없으면, 이러한 시스템은 균형을 잃게 될 것이다. 실제로 이 반응에 참가하는 효소 중 어느 하나라도 불활성화 되면 탄소고정반응이 억제되며, 낮은 H2O2의 농도에서도 탄소고정이 이루어지지 않는다. H2O2가 겨우 10uM만 존재해도 반응의 50%가 저해된다. 이는 반응성이 매우 큰 물질들을 잡아내는 시스템이 작동하지 않는다면, 0.5초 만에 쌓일 수 있는 농도이다.20


  그림 하단부에 있는 마지막 반응은, rubisco의 기질이기도 하며 반응 전 과정에서 매우 중요한 분자인 RUBP를 만들어내기 위해 ribulose-5-phosphate에 2번째로 인산염을 결합시키는데 ribulose-5-phosphate kinase를 사용하는 것으로, 이것 역시 광합성에서만 볼 수 있는 독특한 반응이다.

 

(다음에 계속됩니다)

 

 

*한국창조과학회 자료실/진화론의 주장/돌연변이에 있는 많은 자료들을 참조하세요

    http://www.kacr.or.kr/library/listview.asp?category=J01



번역 - 미디어위원회

링크 - ,

출처 - TJ 17(3), 2003

구분 - 3

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=1902

참고 : 1903|4454|1553|380|4433|4407|4358|4225|4105|4113|4034|3854|3758|4830|4854|5432



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2018-서울중구-0764 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광