LIBRARY

KOREA  ASSOCIATION FOR CREATION RESEARCH

창조설계

미디어위원회
2019-11-21

꽃은 소리를 듣고 있었다.

: 달맞이꽃은 벌의 윙윙 소리에 맞추어 꿀의 당도를 더 높인다.

(Your Flowers Are Listening) 

by Frank Sherwin 


     식물학자들은 수십 년 전부터, 식물이 단지 광합성을 하고 번식만을 하는, 정적인 생물체가 아니라는 것을 깨닫고 있다. 실제로 식물은 과학자들을 놀라게 하는, 명확하게 설계된, 믿을 수 없도록 놀라운 지각 특성을 갖고 주변의 살아있는 세계를 인식하고 있었다.[1~3]

식물학에서 새롭게 시작되고 있는 한 분야는 식물음향학(plant acoustics, phyto acoustics)이라고 불리는 분야이다.[4] 2019년에 식물은 실제로 벌 날개의 진동 주파수(0.2~0.5 KHz)를 감지하고, 반응할 수 있다는 것이 밝혀졌다. 다시 말해서 어떤 식물은 그들의 꽃으로 들을 수 있다는 것이다. 조사된 그 놀라운 식물은 달맞이꽃(evening primrose)이었다. 

이 사실은 여러 측면에서 정말로 놀라운 일이다. 텔아비브 대학의 생물학자들은(Lilach Hadany and Yossi Yovel)은 식물이 벌의 소리를 처음 들었을 때의 반응 속도에 주목했다.[5] 식물은 3분 안에 꿀의 당도를 최대 20%까지 일시적으로 증가시켰다. 식물은 윙윙 거리는 꿀벌의 신호를 받을 때만 꿀을 더 달게 만들도록 설계되어 있었다. 그러나 이 식물은 바람과 같은 관련 없는 소리는 무시하고 있었기 때문에, 더 달콤한 꿀을 만드는데 에너지가 낭비되지 않는다.

덧붙여서 연구팀은 레이저를 사용하여, 꽃잎이 위성접시와 매우 흡사하다는 것을 발견했다. 달맞이꽃의 꽃잎은 “귀”와 같은 역할을 수행하며, 음파가 꿀벌 날개에 의해 생성되는 특정 주파수에 도달하면 맥동하고 있었다. 이 수신된 소리가 정확히 어디로 가는지 결정하기 위해서, 더 많은 연구가 필요하다는 것이다. 릴라크 하다니(Lilach Hadany)는 이 특별한 분야를 식물음향학이라고 부르고 있었다.

진화론자들은 식물이 어떻게든 수천만 년에 걸쳐, 그들의 수분생물과 느리게 공존하도록 진화되었다고 말한다. 그들의 주장은 소리를 듣는 것과 같은, 꽃의 명백한 설계적 특성을 살펴보지 못하도록 만들었다. 창조과학자들은 꽃의 들을 수 있는 능력은 태초부터 식물의 유전자 내에 장착되어 있었다고 생각한다. 사실 달맞이꽃과 같은 꽃을 피우는 현화식물(flowering plants)은 화석기록에서 언제나 현화식물이었다.  

 "지구상의 대부분의 식물 종들이 현화식물들이지만, 꽃의 진화론적 기원은 미스터리로 남아있다."[6] 미스터리로 남아있다고? 아니다. 식물들의 능력은 처음부터 명확하게 설계되어있는 것이다.



References 

1. Sherwin, F. 2005. All Out War in the Cornfield. Acts & Facts. 34 (8).
2. Tomkins, J. 2013. Complex Bioengineering in Blooming FlowersActs & Facts. 42 (4): 16.
3. Guliuzza, R. 2019. Plants Show Engineering Principles. Creation Science Update. Posted on ICR.org May 28, 2019, accessed May 30, 2019.
4. Gagliano, M. 2013. Green symphonies: a call for studies on acoustic communication in plants. Behavioral Ecology. 24(4) 789-796.
5. Donahue, M. Z. Flowers can hear buzzing bees—and it makes their nectar sweeter. National Geographic. Posted on nationalgeographic.com January 15, 2019, accessed May 30, 2019.
6. Vallejo-Marin, M. Revealed: The First Flower, 140-million Years Old, Looked Like a Magnolia. Scientific American. Posted on scientificamerican.com August 1, 2017, accessed May 30, 2019.


*관련기사 : ‘윙윙’ 벌 소리 들은 꽃의 꿀이 20% 더 달콤하다 (2019. 2. 20. 한겨레)

http://www.hani.co.kr/arti/animalpeople/ecology_evolution/882924.html

"식물도 소리 듣고 반응한다" / YTN 사이언스(2014. 7. 6.)  (YouTube) 

https://www.youtube.com/watch?v=zheonUkV-Gc

식물도 보고, 느끼고, 냄새 맡고, 기억한다  (2013. 4. 19. 한겨레)

http://www.hani.co.kr/arti/culture/book/583697.html


출처 : ICR, 2019. 6. 20.

주소 : https://www.icr.org/article/your-flowers-are-listening/

번역 : 미디어위원회

미디어위원회
2019-09-01

식물은 사회적 통신망으로 소통하고 있다. 

(Plants Have Social Networks)

by David F. Coppedge


      2011. 3. 31. - 식물들은 대부분 정지해 있는 것으로 보이지만, 서로 연결이 되어있다. 사실 너무나 잘 연결이 되어 있어 인트라넷, 엑스트라넷, 그리고 인터넷까지 지니고 있다. 내부적으로는 자신의 도관(vessels)을 통해 단백질과 RNA 분자를 가지고 뿌리에서 줄기에 이르기까지 의사전달을 하고 있다. 외부적으로는 다른 유기체들과 많은 사회적 관계를 맺고 있다. 심지어 사람이 페이스북(FaceBook)을 통해 친구를 만드는 것처럼 식물은 그들의 파트너로서 친구를 두고 있다.

페리스 자브르(Ferris Jabr)은 이번 주 New Scientist (2011. 3. 23) 지에 식물의 의사전달에 관하여 기술하였다. 그의 기고는 ”식물들의 지하조직은 강력한 동맹과 친족으로 구성된 하나의 사회적 네트워크(social network)이다”로 시작하는데, ”식물들의 메시지를 해독하는 것은 농장이나 산림에서 근본적인 변화를 가져올 수 있다”고 그는 주장한다. 그는 진화론의 용어인 ”경쟁, 생존, 길항작용, 방어, 혈연선택(kin selection)” 등을 사용하여 기술하고 있었는데, 그러나 그러한 이야기는 실제로 보면 ”식물이 의사전달을 수행하는 놀라운 기작”에 관한 설명인 것이다.

우리는 식물들이 서로 반응을 하고 있다는 사실을 이전부터 알고 있었지만, 그러한 반응의 상호작용이 얼마나 미묘하고 정교한지는 단지 오늘날 비로소 깨닫고 있는 중이다. 식물은 계속해서 때로는 공감적으로 때로는 이기적으로 서로간의 화학적 소리를 엿듣고 있다. 스칸디나비안 진달래(석남)와 같은 어떤 식물은 필요한 자원을 공유함으로서 자기의 이웃을 돕는다. 다른 식물들은 가까운 친척들을 인식하고 그들을 다른 낯선 식물보다 더 좋아한다. 그리고 적어도 어떤 기생식물은 그 기주(숙주)식물의 비밀스런 화학적 향기를 알아채어 기생한다...

”식물들은 파티에 참석하거나 영화를 보기위해 외출하지 않습니다. 그러나 그들은 사회적 소통을 하며 지냅니다”. 캐나다 밴쿠버 브리티시 콜롬비아 대학의 산림생태학자인 수잔 시마드(Suzanne Simard)는 말한다. ”식물들은 서로 지지(후원)하기도 하고 서로 싸우기도 합니다. 우리가 식물들의 신호전달과 의사소통을 연구하면 할수록 그만큼 더 새로운 것을 배우게 됩니다. 정말 믿기지 않는 놀라운 일입니다”.

물론 식물들이 이기심이 있다던가, 아니면 호전성이 있다고 말하는 것은 적절치 못한 의인화이다. 식물들은 눈이 없고, 귀가 없고, 뇌가 없어도, 신호를 전달하고 그것에 반응하는 불가사의한 능력을 지니고 있다. 자브르은 그의 논문에서, ”이러한 것의 일부는 공기 중에 떠돌아다니는 휘발성 화합물입니다. 더욱더 놀라운 것은 토양속의 균류 섬유(fungal filaments)의 고속도로 망인데, 그것들은 식물과 식물사이의 메세지와 영양분을 중계(연결)한다”고 기술하고 있었다.

숲의 바닥층 아래에 있는 한 스푼의 토양 속에도 수백만 개의 작은 유기체들이 들어있다. 이러한 박테리아와 균류는 식물의 뿌리와 공생관계를 이루며 기주식물의 지속적인 영양공급의 보답으로서 수분흡수와 질소와 같은 필수요소(성분)의 흡수를 돕는다.

이제 좀 더 자세히 조사해보면 균류의 끈실(fungal thread)이 물리적으로 다수의 나무뿌리를 물리적으로 결합시키고(종종 다른 수종의 뿌리도 결합시킨다) 하나의 단일화된 균근 네트워크(single mycorrhizal network)를 구성함을 알 수 있다. 우리의 발아래로 얼기설기 퍼져있는 이러한 통신망(webs)이 진정한 사회적 네트워크인 것이다.

자브르는 계속된 설명에서, ”이러한 균류의 고속도로망을 통하여 식물은 양분은 물론 정보를 공유하는데, 예를 들면 풀쐐기(caterpillar, 모충)가 토마토의 잎을 우적우적 먹기 시작할 때 잎들은 해로운 화합물을 만들어 내어 공격자를 쫓아내거나, 이웃한 식물들은 자신의 방어체계를 준비하도록 자극된다는 것이다”는 것이다. 식물들은 그들 자신의 고유한 종(species)을 인식하며, 공동의 이익을 위해 함께 일한다. 그러나 한편 식물들은 다양한 유기체들의 공동체 안에 있어서, 서로의 공헌을 통해 공동체에 이익을 주고 있는 것이다.

”우리는 아직 식물의 언어에 대해서는 말할 수 없다. 하지만 우리는 식물이 뿌리에서 근계토양층(rhizosphere)으로 분비하는 페놀들, 플라보노이드들, 당들, 유기산들, 아미노산들, 단백질들 등과 같은 수용성 화합물로 구성된 암호(code)를 통해 말할 수 있음을 알고 있다”. 어떻게 이러한 것들이 서로 관련성을 가지고 있는 지는 여전히 신비이지만, 실용적으로 응용한다면 농부는 재배작물을 ‘친구’로 만들 수 있을 것이다. ”서로 다른 작물이나 정원식물들을 전략적인 위치에 식재하여, 그들이 해충을 쫓아내거나, 꿀벌에 의한 수분(pollination)을 유인하거나, 양분의 흡수를 개량시킴으로서 서로에게 이익을 줄 수 있다”. 다른 말로 표현하면 단일작물을 재배하면서 제초제를 듬뿍 뿌리는 것 대신에, 미국 원주민들이 수세기 동안 사용해왔던 재배방식으로 되돌아 갈 수 있다는 것이다.

이러한 식물의 능력이 수백만 년에 걸쳐 서서히 진화되어 왔을까? 찰스 다윈은 지구상에서 가장 크고 가장 다양한 식물 그룹인 개화식물(flowering plants, 현화식물)의 갑작스런 출현을 ‘지독한 미스터리(abominable mystery)’라고 불렀다. 다윈의 이 ‘지독한 미스터리’는 이번 주에 또 한 번의 강타를 당했다. 왜냐하면 중국 서부 요녕성의 제홀(Jehol) 지층에서 책속에 인쇄된 것처럼 보이는 아름답고 정교한 잎들이 완벽하게 보존된 채로 발견됐다고 New Scientist 지가 보도했기 때문이다. 그들의 연대는 1억2천3백만 년 전으로 평가되었는데, 이것은 하나의 발달된 피자식물(angiosperm, 속씨식물)을 ”오늘날 주변에 있는 모든 개화식물들의 조상과 거의 같은 연대로 위치시키는 것이다.”

콜린 바라스(Colin Barras) 기자는 ”개화식물(현화식물)은 당시 주변에 있던 침엽수와 기타 다른 나자식물(gymnosperm, 겉씨식물)의 진화적 경쟁에 위치했다가 갑자기 우점되었다”고 주장한다. 그러나 그러한 설명의 문제는 적자생존(survival of the fittest)을 한 것이 아니라, 가장 적합한 상태로 적자도착(arrival of the fittest)을 했다는 것이다. 심지어 진화론자들 자신의 타임라인을 가정한다 하더라도, 진화론자들은 어떻게 복잡한 식물들이 공통조상도 없이, 갑작스럽게, 완벽한 형태로 나타나게 되었는지, 그리고 통신수단과 네트워크 그 모든 것들을 가지게 되었는지에 대해 설명하지 못하고 있는 것이다.



다윈의 진화론은 사회적 통신망의 해커(hacker)이며, 단지 좋은 소식을 공유하기를 바라는 사람들 속의 악성코드(malware)인 것이다.

 

*관련기사 : ”敵 출현…방어하라” 식물들만의 유·무선 통신망 있다. (조선비즈. 2013. 5. 21)

https://biz.chosun.com/site/data/html_dir/2013/05/20/2013052002525.html

칭찬은 고래, 아니 '식물'도 춤추게 한다 (2013. 7. 25. 동아사이언스)
http://www.dongascience.com/news/view/1701/news

새에게도 '도와줘요', 식물은 소통의 '달인' (2013. 7. 30. 한겨레)
http://ecotopia.hani.co.kr/171198


번역 - 문흥규

주소 - https://crev.info/2011/03/plants_have_social_networks/

출처 - CEH, 2011. 3. 31.

미디어위원회
2019-09-01

식물은 자세히 볼수록 경이롭다 

: 통신과 스위치, 세포벽 건축, 상향 이동성 

(Plant Wonders Are in the details)

David F. Coppedge

 

       당신이 보도블럭의 틈새로 자라난 잡초를 밟았을 때, 그 풀이 어떤 놀라운 기계장치에 대한 아이디어를 제공해 줄 수 있는지 생각해 보았는가? 좀 더 자세히 들여다본다면, 도움이 될 수 있을 것이다.

1. 통신과 스위치 시스템 : 종자는 싹이 틀 때, 스스로를 보호하려고 노력하면서 어둠속에서 우선 위로 향하여 자랄 필요가 있다. 그리고 공기와 빛에 이르게 되었을 때, 잎을 펼치고 햇빛을 수집할 필요가 있다. Science Daily(2010. 12. 27) 지는 이러한 특정한 시점에서 발생하는 화학적 신호에 대하여. ”많은 요소들이 이러한 발달적 스위치에 포함되어있다...”고 하면서 카네기 연구소(Carnegie Institute)의 연구를 전하고 있었다. 그것 중 하나는 브라시노 스테로이드(brassinosteroid)라 부르는 호르몬으로써, 이 호르몬은 토양에서 대기로의 천이(transition) 시에 햇빛에 길항적으로 작용한다는 것이다. 그러나 GATA2라 부르는 또 다른 조절자가 있을 때에만 작용한다는 것이다. ”카네기 연구팀의 새로운 발견은 통신시스템에서 하나의 잃어버린 고리(missing link)로써, GATA2라 부르는 단백질을 확인했다. 그 논문에서는 진화론적 의미에서 ”잃어버린 고리”로 사용하는 것이 아니라, 신호-변환의 의미에서 ”잃어버린 고리”로 사용하고 있었다. ”이 단백질은 특정 스위치 유전자를 켜거나 끔으로써, 어린 식물이 어떤 형태로 자랄 것인가를 알려 준다”. ”....또한 그것은 빛에 의해 켜지는 식물 내부 시스템과 브라시노스테로이드에 의해 켜지는 시스템 간의 통신 연결부로서 기능을 한다”는 것이다.

2. 세포벽 건축자 : 세포벽은 리그닌(lignin)이라 불리는 고분자의 분자들을 가지고, 어린 나무와 큰 나무들이 똑바로 서있을 수 있도록 해준다. 그러나 리그닌은 세포질의 내에서 조립될 수 없다. 그것은 세포벽 안에서 조립되어야만 한다. 그것은 세포내에서 제조되는 전구체(precursors)라 부르는 재료가 세포막을 통해서 조립 장소로 이동해야만 하는 것을 의미한다. 그것 중 일부는 물질을 저장하는 미소기관인 액포(vacuoles)에서 일시적으로 저장되고, 액포 막을 통한 추가적 전달을 필요로 한다.


그 전구체가 단지 확산(diffusion)의 방법으로 그들의 목적지로 흘러가는 지는 분명치 않았다. 브룩해분 국립실험실(Brookhaven National Labs)의 연구자들은, 대신 전구체를 건설 위치로 운반해주는 트랜스포터(transporters, 운반자)라 부르는 에너지로 추진되는 분자기계를 발견했다. PhysOrg(2010. 12. 13) 지는 PNAS에 한 논문을 보고했는데[1], 어떻게 이러한 트랜스포터가 연료처럼 ATP 에너지를 소비하면서 그들이 속해있는 곳에서 재료를 활발하게 취하는지를 설명하고 있었다. 그 논문은 ”시험 결과 순수 모노리그놀(monolignols, 리그닌 전구체)은 세포막을 가로질러 이동하고, 한편 모노리그놀 글루코사이드(monolignol glucosides)는 선택적으로 액포로 이동한다”고 말하고 있었다. ”그러나 가장 중요한 것은, 어느 쪽 전구체라도 ATP의 추가(세포내 에너지의 분자적 보급) 없이는 어떤 막이라도 횡단하여 이동할 수 없었다”. 그 논문은 어떻게 그 운반자가 그들의 작용에 있어 매우 선택적인지를 기술했다 : ”APT의 존재 하에서, 역위 원형질막(inverted plasma membrane) 소낭은 선택적으로 monolignol aglycones를 취하고, 반면 액포 소낭은 glucoconjugates에 대해 더욱 특이적이라는 것인데, 그것은 서로 다른 ATP-결합의 카세트 같은 운반자가 그것을 특정한 장소로 운반하는데 있어서, 서로 다른 화학적 형태들을 인식한다는 것을 암시하는 것이다.......”

3. 상향 이동성 : 여러분은 나무의 뿌리에서 꼭대기로 수액(sap)을 펌프하여 올리는데 무엇이 필요한지 생각해 본 적이 있는가? 마드리드 대학(University of Madrid)의 과학자들은 그러한 생각을 가진 사람들 중 일부이다. 학생들은 아마도 목질부(xylem)나 체관부(phloem)라는 용어를 기억할 것이다. 목질부는 물을 전달하고, 체관부는 양료를 전달하는 기관이다. Science Daily(2011. 1. 4) 지는 ”새로운 수력시스템이나 흡입 펌프를 향상시킬 수 있는 기술을 응용하기 위하여, 수액의 이동에 열쇠가 되는 것을 발견”하는데 연구의 목적이 있다고 하였다. 


”이 연구의 주요 결론은 나무의 줄기 속에 있는 수액은 가압상태에 있었다”고 논문은 밝혔다. ”그것은 압력이 체관부의 도관은 물론 목질부의 도관에서 양성(positive)일 때, 그 모델은 방사방향으로 팽창한다는 것”으로 입증된다. ”그러나, 그 압력이 목질부에서 음성이고, 체관부에서 양성일 때는(이것은 낮 동안에 일어난다고 믿어진다), 그 모델은 방사방향으로 수축한다는 것”이다. 나무는 도대체 어떻게 이러한 정보를 배웠을까? 나무는 중력에 반대하여 물을 짜내거나, 혹은 펌프하는 여러 가지 좋은 방법들을 가지고 있다. 연구자들 중 한 사람은, ”현재 정상 대기압 하에서 10m 이상 물을 끌어올릴 수 있는 흡입펌프는 없다”고 전문가들의 의견을 말했다. 그러나 세쿼이아(sequoia) 나무는 100m 이상 물을 끌어올릴 수 있다! 그 사실은 식물로부터 배울 수 있는 어떤 것이라도 이 분야에서 일하는 사람들에게는 대단한 관심을 끌 수 있는 것일 수 있다.

프린스톤 대학의 연구자들 역시 이러한 실마리를 찾기에 열심이었다. PNAS 지에 발표된 논문에서[2], 그들은 ”식물 유관속의 네트워크는 식물학적 형태, 기능, 그리고 다양성의 중심부”라고 말했다. 그리고 그들은 어떻게 전달물질이 수력 안정성과 효율 사이에서 교환을 필요로 하는 지를 설명했다. 그들은 ”수액 흐름의 예측, 수간에서 나무 꼭대기 가지로 목질부 도관 반경의 점차 가늘어짐, 그리고 어떻게 목질부 도관의 빈도가 도관의 반지름에 따라 변하는 지”의 모델을 개발하였고, 그 모델을 참나무, 단풍나무, 소나무 등 여러 나무들과 비교하였다. 어찌되었든 이들 나무들은 최대 효율을 얻기 위해 바닥에서 나무의 꼭대기까지 자신의 도관 반지름을 어떻게 점차 가늘게 하는지를 알고 있었던 것이다.     

저자들은 그들의 논문에서 ”진화적 운전자”를 말했으나, 그러나 실제로는 ”설계의 필요조건”을 말하고 있었던 것이다. 즉, 1)도관을 통해 수액의 흐름과 잎에 의한 탄소흡수를 최대로 하기위한 공간 채움의 기하학적 배열 2)잎으로 수력 전도계수와 자원 공급의 증가 3) 색전증(embolism)에 대비한 보호기능과 그와 관련한 유관속 전도의 감소 4)식물전체로 균일한 생물 기계적 제한의 실행 5)말단부 가지 크기의 독립성, 유속비율, 그리고 식물의 크기와 관련된 내부구조” 등이다. 어디에도 그 필요한 구조를 만들 것 같은 그럴듯한 돌연변이 결과를 설명해주는 내용은 전혀 없었다. 그들은 단지 ”자연선택”이 어떻게든 이러한 필요사항들을 충족시켰을 것이라고 추정만하고 있었다.

식물의 진화에 대해 말하면서, PhysOrg(2010. 12. 13) 지의 또 다른 기사는 PNAS[3]의 다른 논문을 요약하고 있었는데, 그들은 구과(cone, 솔방울 등)를 지닌 현화식물의 공통 조상을 찾기 위해서 추적하고 있었다. 그 논문은, 다윈의 지독한(혐오스러운) 미스터리(Darwin’s Abominable Mystery)라 불려지는 ”피자식물(angiosperms, 속씨식물)의 기원과 급격한 다양화는 많은 연구자들이 오랜 기간에 걸쳐 연구해왔다”면서. ”현화식물이나 피자식물의 진화론적 기원은 미해결된 최대의 생물학적 미스터리의 하나로 남아있다”고 서론에서 말하고 있었다.

그렇다면 그들은 그 미스터리를 해결했는가? 만약 PhysOrg 지의 요약 글에서 그러한 어떠한 암시가 있었다면, 그들은 출현(emergence)이라는 단어로 그것을 표현함으로써, 진화를 추측하고 있었을 뿐이다 :

PNAS 지의 이번 주에 발표된 새로운 연구는 1억3천만년 이상 된 수많은 다양한 속씨식물들을 재빨리 일으키는 진화론적 혁신으로 그들의 유전적 기원에 대한 새로운 통찰력을 제공하고 있다. 연구팀의 공동 책임자는 비슷한 완곡어법을 사용했다 : ”수련(water lily)과 아보카도(avocado)의 꽃은 근본적으로 여전히 같은 유전적 구조를 지닌 ‘유전적 화석’인데, 그것은 나자식물의 구과(cone)가 꽃으로 변형되도록 허용한 것 같다”고 도우 솔티스(Doug Soltis)는 말했다. ”우리는 최초의 속씨식물이 나자식물(gymnosperm, 겉씨식물)의 구과에서 발견된 이미 존재하는 유전적 프로그램에서 어떻게 진화되었는지, 그 다음 우리가 오늘날 볼 수 있는 다양한 속씨식물들로 어떻게 발달했는지를 보여주었다”. 솔티스는 ”나자식물 구과에 들어있는 유전적 프로그램은 최초의 꽃을 만들기 위해 변형되었다”라고, 진화론적인 실제 과정은 소극적인 표현의 동사로 감추면서 말을 계속했다.

그의 설명은 또한 어떻게 구과가 달리는 식물이 처음의 장소에서 꽃을 위한 유전적 프로그램을 만들었는지, 그리고 왜 그것이 진화론적 시간 틀에서 이전의 수백만 년 동안 그러한 목적으로 사용되지 않았는지에 대한 논점을 교묘히 피하고 있었다. 마지막에서, 그 논문은 만물 우연의 법칙과는 동떨어진 답변을 하고 있었다 : ”어떻게든 유전적 변화가 일어나 웅성(수컷)의 구과가 자성(암컷)의 기관을 만들도록 했고, 아마도 더욱 중요한 것은, 그것이 화려한 화판(petal)과 같은 기관을 만들게 하여, 벌과 같은 수분 매개체와 새로운 상호작용을 유인했다”는 것이다. 그러나 ”무언가 허용한다” 것이 성취되기 위한 필요충분 조건을 제공하는가? 만약 그것이 사실이라면, ”건축을 허가하는 것이, 건물이 저절로 지어진다는 의미”로 간주 될 것이다.


1.  Miao and Liu, ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes, PNAS, published online before print December 13, 2010, doi: 10.1073/pnas.1007747108 PNAS December 13, 2010.
2. Savage et al, 
Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants, PNAS, published online before print December 13, 2010, doi: 10.1073/pnas.1012194108.
3. Chanderbali et al, 
Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower,  PNAS, published online before print December 13, 2010, doi: 10.1073/pnas.1013395108.

---------------------------------------------------------------------------


자연의 한 새로운 법칙인 DAM(Darwin’s Abominable Mystery, 다윈의 지독한 미스터리) 법칙이 여기서 기술되고 있다. 속씨식물의 진화에 대한 어떠한 논설이나 논문도 그러한 어구에 의해 덧붙여질 것이다. 이것은 다윈뿐만 아니라, 오늘날 그의 추종자들에게까지 그러한 곤경을 설명하는 시간불변의 법칙이 되고 있다. 

진화론자들은 역시 DAM 법칙에 관하여 미쳐(MAD) 있다. 다윈의 지독한 미스터리(Mystery’s Abominable Darwin) 법칙은 여러 곳에서 발생될 수 있음을 보여주고 있다. DAM 법칙은 식물 자체를 혐오스러운 것으로 주장하지 않음을 주목하라. 그렇다. 식물은 놀라운 것이다. 그들은 정말로 잘 설계되어있다. 식물 기원의 미스터리는, 다윈주의라는 전제(가정)된 증오의 씨앗으로 음모를 꾸미고, 설계와는 동떨어진 ”저절로 발생하는”, ”발달하는” 등과 같은 해로운 웅변술로 물을 줄 때에만 혐오스러운 것이다. 그러한 변형된 정원에서는, 어떠한 것도 자랄 수 없고, 어떠한 신비감도 없는 것이다!


번역 - 문흥규

주소 - https://crev.info/2010/12/plant_wonders_are_in_the_details/

출처 - CEH, 2010. 12. 26.

미디어위원회
2019-09-01

진화론을 거부하는 규조류 

: 정교한 구조와 다양한 아름다움을 가진 경이로운 생물. 

(Homage to Diatoms)

 David F. Coppedge 


     당신이 호흡하는 공기의 20%는 크리스털 성에 사는 작은 생물에서 온 것이다.

Live Science(2014. 6. 10) 지에 게재된 한 규조류(diatom)의 사진은 충격적이다. 그것은 사람이 만든, 또는 기계가 만든 구조임에 틀림없어 보인다. 너무도 완벽하게 보이는, 이 나노공학의 결정체가 살아있는 생물체인 규조류라는 것은 놀랍다. 규조류는 광합성을 하는 단세포 미생물로 바다에 극도로 풍부하며, 일부 민물 호수에서도 살아가는 플랑크톤이다. 그들의 서식지도 매우 다양한데, 일부는 극지방의 얼음에서, 일부는 열대 산호초에서도 발견된다.


기사는 규조류 전문가인 앤드류 앨버슨(Andrew Alverson, 아칸소 대학)와의 인터뷰로 시작하고 있는데, 다양한 규조류 종들의 전자현미경 사진들을 보여주고 있다.(photo gallery). 이들은 너무도 멋있어서 실제 생물이 아닌 것처럼 여길 정도이다. 앨버슨은 규조류를 ”대부분의 사람들이 잘 들어본 적이 없는 가장 중요한 작은 생물”이라고 불렀다. 

규조류는 매우 작다. (그들 중 10에 5는 핀 머리에 올려놓을 수 있을 정도로). 하지만 이들 단세포 조류는 지구 행성의 생태계 유지에 엄청난 역할을 감당하고 있다. 그들은 탄소와 산소의 순환, 해양 먹이사슬의 주요 구성 요소이며, 지각의 약 1/4을 구성하고 있는 규소(silica)의 주요 순환체이다.

앨버슨은 규조류는 10만 종(species) 정도가 있는 것으로 (심지어 두 배까지도 될 수 있다) 평가했다. 그들은 우리가 호흡하는 산소의 약 20%를 생성하고 있는, 생물권에서 매우 중요한 생물이다.

이 규조류에 대한 최초의 유전체(genome) 분석이 이루어졌는데, 그 결과는 진화론자들을 매우 당혹스럽게 만들었다 :

규조류는 많은 다양한 근원에서 기원한 유전자들을 가지고 있는, 고도의 모자이크식(짜집기) 유전체(mosaic genome)를 가지고 있는 것으로 나타났다. 가장 주목할 만한 것은, 유전자들의 많은 부분이 박테리아로부터 수평유전자전달(horizontal gene transfer, HGT)에 의해서 획득된 것처럼 보인다는 것이다. (수평유전자전달은 상호 교배될 수 없는 생물 종들 사이에 유전자들 교환이 일어나 있는 것을 말한다). 유전체 데이터는 수평유전자전달이 한때 생각했었던 것보다 진핵생물에서 훨씬 더 흔하다는 것을 보여주고 있지만, 이러한 멀고 먼 친척 생물들 사이에 유전자 전달은 극히 드문 일이다. (진화론적 시간 틀로 규조류와 박테리아는 마지막 공통조상을 10~20억 년 전에 가지고 있었다).    

이것은 진화론의 절망적인 유전학적 증거이거나, 유전학적 진화론이 완전히 허구임을 가리키는 증거처럼 보인다. 앨버슨은 이러한 문제점을 설명해내기 위해 애쓰고 있었다 :

극도로 다양한 진핵생물의 다양성에 관련된 일부 동일한 (대부분 내인적인) 과정이  규조류의 진화 과정을 통해 나타났는지는 두고 볼 일이다. 예를 들어, 현화식물과 척추동물은 전체 유전체를 복제하는 연속적인 단계를 경험했다. 복제된 유전자의 대부분이 진화 역사의 쓰레기통 속으로 즉시 소실되었지만, 일부 복사본들은 남았고, 새롭고 변형된 기능을 획득하도록 그들의 조상들에서 자유롭게 독립적으로 진화했다. 규조류 유전체는 많은 중복된 유전자들을 포함하고 있다. 하지만, 이러한 조각난 대대적인 유전자 폭발이 어떻게 기원했는지는 공개된 질문이다.

앨버슨은 더 많은 규조류들에 대한 유전체 염기서열 분석이 이러한 질문에 대답을 줄 수 있을 것으로 희망하고 있었다 :

그러나 유전체는 모든 간격을 메울 수 없다. 규조류 종의 약 90%는 아직 발견되고 명명되어야 한다. 그래서 우리가 규조류의 다양성을 밝히기 시작한다 하더라도, 그들의 대부분은 익명으로 남아있을 것이다.

이 기사의 어디에도, 그리고 앨버슨도 규조류의 극도로 정교한 크리스털 성이 어떻게 만들어질 수 있었는지 설명하지 않고 있었다.



현미경을 통해서 이 생물이 처음 관찰된 이후로, 규조류는 사람들을 매료시켜 왔다. 무디 연구소의 오래된 과학 영화 ‘숨겨진 보물(Hidden Treasures)’에서 어윈 문(Irwin Moon) 박사는 규조류의 다양성과 아름다움을 눈송이에 비유했었다. 어떻게 그렇게 많은 종들과 다양한 모양과 패턴들이 생겨날 수 있을까? 이것들이 모두 목적도 없고, 방향도 없고, 지성도 없고, 계획도 없는, 무작위적인 돌연변이들로 우연히 생겨났을까? 규조류들의 아름다움과 디자인은 생존을 위해 어떻게 필요했던 것일까?   


만약 창조주가 지구 행성에서 생물들이 살아가는 데에 필수적일 뿐만 아니라, 아름답고 멋진 한 부류의 생물체를 만들기 원하셨다면, 여기에 그 좋은 예가 있다. 규조류의 다양한 모습들과 정교한 디자인과 아름다움은 진화론으로 설명될 수 없다. 진화론자들이 규조류의 유전체와 다양성과 아름다움에서 느끼고 있는 절망감은 창조론자들과의 야구시합에서 퍼펙트 게임을 당했음을 의미한다.(8/11/2012. 아래 관련자료 링크 1번 참조). 

이제 사진 갤러리(photo gallery)에 들러 경이로운 규조류들을 감상해 보라. (구글 이미지는 여기를 클릭)   

*관련기사 : 규조류의 숨겨진 가치. 반도체 칩 제조와 CO2 흡수 (2008. 3. 5. ScienceTimes)

                    식물이 냄새를 맡는다고? 돌 냄새를 맡는 규조류 (2016. 3. 8. ScienceTimes)

 

번역 - 미디어위원회

링크 - http://crev.info/2014/06/homage-to-diatoms/ 

출처 - CEH, 2014. 6. 19.

미디어위원회
2019-08-27

나무에서 중력을 거스르는 물의 운반

(Anti-Gravity Water Transport in Trees)

 Frank Sherwin  


     나무의 뿌리에서 꼭대기의 잎까지 10층 높이로 물을 운반하는 것은 쉬운 일이 아니다. 이것이 어떻게 이루어지는가? 그 답은 목질부(xylem)라고 불리는, 작고 특별히 설계된 맥관과 다른 요소들의 조합에 있다. 과학자들은 미래의 대규모 담수화 및 하수 처리를 위해서, 이 놀라운 물의 수직 통로를 모방하고자 한다.[1, 2]

진화론자들은 나무는 이러한 물의 놀라운 운송을 수억 년 전에 마스터했다고 말하고 있었다. 연구자들은 캘리포니아 레드우드(California redwood tree, 세쿼이아) 나무에서 100m의 높이로 지속적으로 이동되는, 끊어지지 않는 수직적 물기둥이 얼마나 복잡한 지를 보여주고 있었다. 물과 미네랄은 뿌리계와 맥관 조직(즉, xylem) 내로 들어가고, 주로 증산(transpiration, 발산)이라 불리는 "당겨지는" 힘을 받는다. 증산은 잎의 밑면에 있는 기공(stomata)이라는 특수한 개구부를 통한 수증기의 손실이다. 뿌리에 의해 흡수된 물의 20% 이상이 수증기로서 대기로 방출된다. 이 물리적인 끌어당김(pulling) 작용은 수소결합이라 불리는 물 분자 사이의 독특한 화학적 부착 때문이다. 물 분자는 서로 밀착되어 응집 장력 이론(cohesion-tension theory)이라 불리는, 증산류(transpiration stream)를 형성한다. 이것은 지속적으로 움직이는 물의 비정상적으로 안정적인 기둥을 생성한다.

나무의 물-운반 시스템을 모방하는 것은 쉬운 일이 아니다. 중국 절강이공대학과 저장대학의 연구자들은 나무의 반-중력 물 수송 시스템은 “좋은” 것으로 여기고 있었다. 그리고 “산업 전반에서 응용될 수 있는, 물을 빠른 속도로 먼 거리로 운송할 수 있는 시스템을 만들기 위해 노력하고 있었다.   

그 기사는 이렇게 말하고 있었다 : “중력을 거슬러 물을 높은 곳으로 효율적으로 이동시키는 시스템은 사람이 만들어낸 주요한 공학적 업적이었다. 그런데 나무들이 수행하고 있는 놀라운 물 수송 시스템을 재현하는 것은 어려운 일이다.”

식물의 물 수송 시스템은 놀라울 정도로 복잡하다. 연구자들이 모방하려는 이러한 시스템은 창조주의 설계를 가리키는 것이다. 무작위적 돌연변이들이 오랜 시간 동안 축적되어 우연히 생겨날 수는 없어 보인다. 


References

1. Zyga, L.Antigravity water transport system inspired by trees. PhysOrg. Posted on phys.org July 8, 2019, accessed July 10, 2019.

2. Xu, W. et el. 2019. Efficient Water Transport and Solar Steam Generation via Radially, Hierarchically Structured Aerogels. ACS Nano. DOI.org/10.1021/acsnano.9b02331

*Mr. Sherwin is Research Associate at the Institute for Creation Research. He earned his master’s degree in zoology from the University of Northern Colorado.


출처 : ICR, 2019. 7. 30.

주소 : https://www.icr.org/article/anti-gravity-water-transport-in-trees/

번역 : 미디어위원회

미디어위원회
2019-07-10

풀산딸나무 화분의 경이로운 폭발! 

: 투석기와 유사한 발사 장치는 설계를 가리킨다. 

(Bunchberry bang!)


      여름 맑은 날 북미의 광활한 가문비-전나무 숲을 거닐다보면, 당신은 온통 녹색의 세상 속에 있다고 생각할지도 모르겠다.

풀산딸나무(Bunchberry, Cornus canadensis, 층층나무속의 일종. 산딸나무)는 일반적으로 4월말에서 6월에 꽃이 핀다.

그러나 연구자들은 이 숲의 지면에 카펫을 깔아놓고 있는 이 나무가, 꽃이 필 때 꾸물거리지 않는다는 사실을 발견했다. 고속의 비디오카메라를 이용하여 연구자들은 이 나무의 꽃이 화판에서 열릴 때, 공중으로 0.4 밀리초(=0.0004초)의 속도로 화분을 발사한다는 것을 보여주었다![1, 2] 그것은 솔거품벌레(spittle bugs)와 거품벌레(froghoppers)의 도약(0.5~1.0 밀리초)[3, 4], 사마귀새우(mantis shrimp)의 찌르기(2.7 밀리초)[5, 6], 봉선화/물망초 과실의 열림(2.8~5.8 밀리초)[2], 카멜레온(chameleon)의 혀 내뱉기(50 밀리초)[7, 8], 그리고 벌레잡이 식물 파리지옥(venus flytraps)의 잎 닫기(100 밀리초)보다 빠른 것이었다.[9, 10].

(Photo by A. Acosta, J. Edwards, M. Laskowski and D. Whitaker, see ref. 2.)


”대부분 사람들은 식물이 정지해 있고, 정적인 것으로 생각한다”. ”우리조차도 이 꽃이 얼마나 빨리 열리는 지를 보고 놀랐다”고 연구자인 조안 에드워드(Joan Edwards)는 말했다.[11]. 정말로 그랬다. 연구자들은 매 초 당 1,000장의 사진을 찍는 고속 카메라를 이용하여 시작을 했으나, 그 이미지는 흐렸다. 그것은 카메라가 너무 느렸음을 가리키는 것이었다! 그래서 초 당 10,000장을 찍을 수 있는 초고속 카메라를 사용하여, 이 나무의 꽃이 열릴 때 어떤 일이 일어나는지를 정확히 필름에 담을 수 있었다!


꽃이 폭발할 때, 화판이 빠르게 분리되고(처음 0.2밀리 초 안에), 화분이 달린 수술이 밖으로 튀어나가는 형태로 뒤로 젖혀졌다. 그 때 수술이 휘날리고, 중력의 2,400배로 가속이 되어(우주비행사가 이륙할 때 경험하는 힘의 약 800배) 화분 알갱이들은 공중으로 ‘2.5cm의 인상적인 높이’로 사출되었다. 이것은 일견 대단치 않은 것 같이 보일지 모르지만, 그 꽃은 키가 수 mm(1인치의 1/10 미만)일 뿐이다. 그래서 그것은 우리가 돌을 6층 빌딩 꼭대기로 던져 올리는 것과 같은 성취라고 말할 수 있겠다![11]


실제로, 사람들은 그 같은 업적을 성취하는 법을 알고 있었다. 중세의 전쟁 시에 사용된 투석기(trebuchet)가 그것이다.[13] 그 투석기는 독창적으로 설계된 것으로[14], 물리학의 지렛대 원리를 이용하여, 단순한 석궁보다 더 멀리, 그리고 더 빠르게 물체(돌)를 내던지는 도구이다.[12]

중세시대에는 투석기가 전쟁에서 사용되었다. 예로써, 대형투석기에 의한 지레장치와 힘은 적진을 향해 요새의 벽에 손상을 입히기에 충분한, 상당히 무거운 물체를 던지기에 충분한 것이었다. 중세 투석기의 어떤 그림에는 심지어 불운한 협상자(사자)를 그가 온 곳의 성벽 너머로 던져지는 그림이 있다! 또한 투석기는 성 내에 질병을 퍼뜨리기 위해서, 사람의 시체나 동물의 시체를 성이나 요새 안으로 던져 넣을 때 사용됐었다고 보고되고 있다.

풀산딸나무의 수술(stamens)도 이와 유사한 것으로, 그 기능에 있어서는 소형 투석기인것으로 밝혀졌다. 수술대(filament) 끝의 꽃밥(anther)과 연결되어있는 유연한 ‘경첩’에 의해서, 탄두(꽃밥의 화분)는 던져지는 팔(수술대)에 부착되어 있다. 화판이 열린 후에 구부러져 있던 수술대가 펴지고, 탄성에너지가 방출되면서, 수술대 선단 근처의 꽃밥의 회전은 화분을 위쪽으로 세게 내던지며, 최대 수직 속도로 화분을 가속 방출시킨다.[2]


중세의 투석기가 바람이 불고 번개가 치는 날 우연히 나무들이 부러져서 어쩌다 저절로 조립되어 생겨날 수 있었을까? 그럴 수 없었을 것이다. 투석기가 지능을 가진 사람에 의해서 설계된 것이라면, 풀산딸나무의 꽃도 누군가에 의한 설계일 가능성이 높지 않은가?(그 꽃의 설계자는 처음부터 그러한 투석기 원리를 알고 있었다!). 실제로, Nature 지의 연구자들은 '설계'라는 단어를 사용하지 않을 수 없었다 : ”풀산딸나무의 수술은 중세의 소형 투석기처럼 ’설계‘되어 있었다.....”[2]


꽃의 구성요소들 각각이 어떻게 하나씩 하나씩 점진적으로 진화되어, 함께 조화스럽게 작동될 수 있었을까? 이러할 가능성은 분명 상상하기 어렵다. ”화판은 수술의 활동과는 무관하게 열린다”[15]고 연구자들은 지적했으나, 그러나 완전히 기능을 하는 수술 ‘투석기’가 이미 제자리에 있지 않았다면, 왜 그렇게도 빠른 화판의 열림이 필요했을까? 그와 반대로, 만약 봄에 화판이 제 때에 열리지 않는다면, 빠르게 발사되는 화판의 발사 장치는 전혀 쓸모가 없었을 것이다.[16]


이러한 모든 사항들에 대한 논리적인 결론은 로마서 1:20절에서 지적한 것처럼, 풀산딸나무 화분의 ‘발사’ 장치는 우연히 생겨나지 않았다는 것이다.

”창세로부터 그의 보이지 아니하는 것들 곧 그의 영원하신 능력과 신성이 그가 만드신 만물에 분명히 보여 알려졌나니 그러므로 그들이 핑계하지 못할지니라” (로마서 1:20)


References
1.Angell, S., Professors record the world’s fastest plant, Oberlin College News & Features, 24 August 2006.
2.Edwards, J., Whitaker, D., Klionsky, S., Laskowski, M., A record-breaking pollen catapult, Nature 435(7039):164, 2005.
3.Burrows, M., Froghopper insects leap to new heights, Nature 424(6948):509, 2003.
4.See also Catchpoole, D., In leaps and bounds—the amazing jumping prowess of frogs and froghoppers.
5.Patek, S., Korff, W., and Caldwell, R., Deadly strike mechanism of a mantis shrimp, Nature 428(6985):819–820, 2004.
6.See also Sarfati, J., Shrimpy superboxer.
7.Snelderwaard, P., de Groot, J. and Deban, S., Digital video combined with conventional radiography creates an excellent high-speed X-ray video system, Journal of Biomechanics 35:1007–1009, 2002.
8.Sarfati, J., A coat of many colours—captivating chameleons, Creation 26(4):28–33, 2004.
9.Forterre, Y., Skotheim, J., Dumais, J., and Mahadevan, L., How the Venus flytrap snaps, Nature 433(7024):421–425, 2005.
10.See also Sarfati, J., Venus flytrap—ingenious mechanism still baffles Darwinists.
11.Schirber, M., World’s fastest plant: New speed record set, Live Science, 24 August 2006.
12.Sohn, E., Fastest plant on Earth, Science News for Kids, 24 August 2006.
13.Trebuchet.com—dedicated to the art of hurling, 1 December 2006.
14.All about catapults, 1 December 2006.
15.Again, our emphasis in bold font. Ref. 2.
16.The catapult mechanisms of chameleon tongues and horse legs are similarly irreducibly complex. That is, both ‘spring’ and ‘release’ systems must be fully in place for the catapult to work—evolution’s hypothetical small intermediate steps would have no advantage by themselves, therefore natural selection would not favour them. See ref. 8—Box: ‘Chameleon catapult’; and Sarfati, J., Horse legs: the special catapult mechanism, Creation 25(4):36, 2003.
(Available in Portuguese and Russian)


번역 - 문흥규

링크 - http://creation.com/bunchberry-bang-mag 

출처 - Creation 31(2):32–34, March 2009.

미디어위원회
2018-12-13

초고도 복잡성의 식물 통신 시스템은 창조를 가리킨다. 

(High-Tech Plant Communication Glorifies the Creator)

by Jeffrey P. Tomkins Ph.D.


      현대 사회는 최첨단 무선 및 유선 네트워크를 갖춘 하이테크 통신시스템을 통해서 중요한 정보들을 교환한다. 사람은 최근에 와서야 이 위업을 성취했지만, 하등하다고 말해지는 식물계(plant kingdom)는 창조 이후부터 이 일을 수행해왔다. 놀랍게도, 식물계는 사람이 만든 컴퓨터 네트워크에 필적하는, 유무선 통신 시스템이 모두 갖고 있었다. 식물의 통신 시스템은 전능하신 창조주만이 설계하실 수 있는 놀라운 창의력을 사용하고 있었다.

이러한 모두-아니면–무(all-or-nothing)의 복잡한 시스템은 하나씩 하나씩 점진적인 진화 과정을 통해서 생겨날 수 없다.

최근 애기장대(Arabidopsis)라 불리는 잡초 식물에서 발견된 사실은 당신이 잔디를 깎거나 관목을 다듬을 때, 식물에 대해 다시 생각하게 만들고 있었다.[1] 이 식물은 곤충에 의해서 상처를 입었을 때, 이웃 식물에게 위험을 경고하기 위해서 화학 신호를 공기 중으로 방출한다. 식물들은 신호가 수신되면, 믿을 수 없는 반응을 시발한다. 경고를 받은 식물은 방어력을 강화하기 위해서 즉각적으로 뿌리 성장을 현저히 증가시켜서, 더 많은 토양 영양분을 흡수한다. 또한 식물은 사과산(malate, 말산)이라고 불리는 화학물질을 더 많이 생산하는데, 이것은 뿌리와 결합되어있는 유익한 토양미생물을 끌어당겨 식물의 방어벽을 증가시킨다.


과학자들은 식물의 지상 부분에서 발견된 무선 통신시스템으로 인해 놀랐고, 또한 지하 부분에서 곰팡이를 데이터 도관으로 사용하고 있는, 더욱 견고한 유선 네트워크를 발견하고 더욱 놀랐다.[2, 3] 이 고효율의 시스템은 전체 식물 공동체가 하나의 그룹처럼, 쉽고 효과적으로 의사소통을 할 수 있게 해주는, 일종의 자연적 생물학적 인터넷이었다.


과학자들은 식물의 뿌리 주변 토양에 서식하는 특정 유형의 곰팡이와 식물 사이에, 상호 유익한 관계가 존재한다는 것을 어느 정도 알고 있었다. 균근곰팡이(mycorrhizal fungi)로 알려진 이러한 유익한 토양미생물은 식물의 전반적인 건강과 성장을 촉진시킨다. 또한 균근곰팡이는 곤충의 공격, 병원체, 가뭄 스트레스 등에 대처하는 식물의 능력을 향상시킨다.

그러나 이들 곰팡이는 또 다른 역할을 하고 있었다. 식물과 식물 사이의 의사소통이 균근곰팡이 연결망을 통해 토양을 가로지르며, 작은 분자들의 방출과 탐지를 통해 일어나고 있었다. 이것은 지역사회의 각 식물들을 연결하는 정보 고속도로의 역할을 하고 있었던 것이다. 식물에는 다양한 화학물질들의 조합 또는 농도의 의미를 해독하기 위한, 암호 및 해독 프로그램에 대한 정보가 내장되어 있다. 이 놀라운 기능은 빌딩 내의 컴퓨터들을 서로 연결하는 광섬유 네트워크처럼, 지하에서 자라나는 실 모양의 곰팡이들에 의해서 수행되고 있었다. 식물이 자신의 잎을 갉아먹거나 수액을 빠는 진딧물(aphids) 같은 곤충을 감지하면, 진딧물을 격퇴시키는데 도움이 되는 화학물질의 분비를 촉발할 뿐만 아니라, 진딧물을 잡아먹는 말벌과 같은, 특정 유형의 곤충을 끌어들이기 위한 특수한 화학물질의 배출을 촉진시킨다. 놀랍게도 손상을 받은 식물은 곰팡이 네트워크를 통해 연결된 다른 식물들에게도 동일한 방어 반응을 일으키도록 신호를 보낼 수 있었다.


이러한 복합적인 통신 시스템은 사람이 만든 컴퓨터 시스템이 사용하는 것과 동일한 종류의 메커니즘을 필요로 한다. 전문화된 세포 기계들과 논리회로들이 정보 기반 메시지로 이루어지질 뿐만 아니라, 대기 중으로 그리고 지하 곰팡이 네트워크를 통해 전송되는 데에 사용된다. 이러한 메시지를 전송하기 위해, 고도로 특수화 된 대기 중 분자들이 무선 통신을 위해 사용되며, 반면에 최첨단 곰팡이 도관을 따라 전달되는 특정 유형의 정보를 가진 화학물질들이 지하에서 데이터를 전송하기 위해서 사용되고 있었다. 수신하는 말단 부위에서는 고도로 특화된 센서, 인터페이스, 제어시스템, 논리회로 등이 작동하여, 특별한 방어를 위한 전체 시스템이 작동되고 있는 것이었다.

식물의 통신 시스템은 피조물에 드러나 있는 하나님의 경이로운 창조에 대한 하나의 예가 되고 있다.

이러한 모두-아니면–무(all-or-nothing)의 복잡한 시스템은 하나씩 하나씩 점진적인 진화 과정을 통해서 생겨날 수 없다. 식물의 통신 시스템은 피조물에 드러나 있는 하나님의 경이로운 창조에 대한 하나의 예가 되고 있는 것이다.



References

1. Sweeney, C., V. Lakshmanan, and H. P. Bais. 2017. Interplant Aboveground Signaling Prompts Upregulation of Auxin Promoter and Malate Transporter as Part of Defensive Response in the Neighboring Plants. Frontiers in Plant Science. 8: 595.
2. Babikova, Z. et al. 2013. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters.16 (7): 835-843.
3. Tomkins, J. P. Plants Use Underground ‘Fungal Internet’ to Communicate. Creation Science Update. Posted on ICR.org August 5, 2013, accessed October 1, 2018.


* Dr. Tomkins is Director of Life Sciences at the Institute for Creation Research and earned his Ph.D. in genetics from Clemson University.

Cite this article: Jeffrey P. Tomkins, Ph.D. 2018. High-Tech Plant Communication Glorifies the Creator. Acts & Facts. 47 (12).

 

*관련기사 : 식물도 위험할 땐 소통한다? (2018. 10. 30. 아시아경제)
http://view.asiae.co.kr/news/view.htm?idxno=2018102915052087532

애벌레 공격에 '위험해!'… 식물, 통증 신호 만들어 잎에서 잎으로 전달 (2018. 9. 20. 한겨레)

https://biz.chosun.com/site/data/html_dir/2018/09/20/2018092000159.html

토마토, 벌레 먹자 사람처럼 ‘대화’하기 시작했다 (2021. 7. 22. 한겨레)

https://www.hani.co.kr/arti/animalpeople/ecology_evolution/1004654.html


번역 - 미디어위원회

링크 - https://www.icr.org/article/10984

출처 - ICR, 2018. 11. 30.

미디어위원회
2018-10-19

식물 뿌리의 기원은 창조를 가리킨다. 

(Secular Root Origins Appear Groundless)

Frank Sherwin


     성경적 기원 모델에 의하면, 최초 육상식물(land plants)은 창조주간 셋째 날에 뿌리 시스템(root systems)을 완전히 갖춘 채로 하나님에 의해서 창조되었다. 최초의 생명체는 알 수 없는 시기에, 알 수 없는 원시대양의 어떤 곳에서, 무기물로부터 진화한 것이 아니다. 육상식물은 완전한 형태와 기능을 가진 채로, 즉 잎, 줄기, 꽃, 씨앗, 뿌리 등을 갖고 있는 완벽한 상태로 창조되었다.

놀라운 일도 아니지만, Nature 지에 실린 최근 기사는 ”육상식물 사이에서 뿌리의 기원은 단계적이고 독립적으로 생겨났다”고 기술하고 있었다.[1] 저자들은 ”4억7천만 년 전의 라이니 처트층(Rhynie chert)”에서 발굴된 아스테록실론 마키에이(Asteroxylon mackiei)라 불리는 한 석송류(clubmoss, lycopsid or lycopod)를 기술하고 있었다. 석송류 잔해들은 스코틀랜드 글라스고우의 사암층을 포함하여 다른 많은 화석 퇴적층에서도 발견된다. 연구자들은 아스테록실론 마키에이가 진화 단계에 있었고, 그것으로부터 ”근관(root cap, 뿌리의 맨끝), 근모(root hairs, 뿌리털), 내생적 발달, 내피(endodermis) 등이 모두 진화했다”고 제안하고 있었다.[1]

그러나 그것들은 어떻게 진화했는가? 오랜 시간, 무작위적 돌연변이에 의해서 우연히? 식물의 이러한 물리적 구조들은 각각 독특한 특별한 기능을 갖고 있으며, 매우 복잡하다. 예를 들어 내피(endodermis, 식물의 물과 영양소 섭취를 조절하는 층)는 중요한 생리적 과정을 조절하는, 카스파리안 대(Casparian strip)라 불리는, 뿌리 세포의 횡단 및 방사상 벽 주위에 일단의 방수물질로 디자인되어있다.


Nature 지의 논문은 뿌리가 없던, 알려지지 않은, 관다발식물의 공통조상에서부터 석송문(1,200종 이상의 살아있는)과 진엽식물(Euphyllophytes, 종자식물, 양치류, 겉씨식물을 포함하는 관다발식물 중의 한 그룹)이 유래되었다고 기술하고 있었다. 이에 반해 창조론자들은 뿌리가 없던 공통조상은 (다른 모든 추정되는 공통조상들과 마찬가지로) 결코 발견되지 않을 것이라고 예측한다.

또한, 저자들은 아무 것도 설명하지 못하는, 수렴진화라는 편리하지만 쓸모없는 개념에 호소하고 있었다.[2] 실제로 진엽식물의 진화를 추적하는 일은 화석 및 분자 데이터들의 지지를 얻지 못하고 있어서 문제가 된다.[3] 하나님은 이 광대한 석송 그룹(즉, 뿌리 축과 분열조직을 갖고 있는 아스테록실론 마키에이)를 수천 년 전에 창조하셨고, 멸종되지 않았던 종들은 어떠한 진화적 발전 없이 변화의 정지(stasis)를 보여주고 있는 것이다.

이러한 고도로 설계된 놀라운 시스템에 대한 유일한 합리적인 이유는 전능하신 창조주에 의해서 즉각적으로 동시에 창조되었기 때문이다.

식물의 뿌리는 식물을 토양에 고정시킬 뿐만 아니라, 영양분과 수분을 흡수하고, 토양 미생물과 함께 공생작용을 하는 복잡한 기관이다. 뿌리는 복잡한 자가-개조 기관이며, 어떠한 진화론적 조상 없이 화석기록에서 갑자기 나타난다. 이 새로운 연구는 이 난처한 진화론적 수수께끼를 부각시키는 역할을 하고 있었다. 이러한 고도로 복잡한 놀라운 시스템에 대한 유일한 합리적인 설명은 전능하신 창조주에 의해서 즉각적으로 창조되었다는 것이다.


References
1. Hetherington, A. J. and L. Dolan. 2018. Stepwise and independent origins of roots among land plants. Nature. 561: 235-238.
2. Tomkins, J. 2016. Convergent Evolution or Design-Based Adaptation?Posted on ICR.org July 7, 2016, accessed September 20, 2018.
3. Rothwell, G. W. and K. Nixon. 2006. How does the inclusion of fossil data change our conclusions about the phylogenetic history of Euphyllophytes? International Journal of Plant Sciences. 167 (3): 737–749.


번역 - 미디어위원회

링크 - http://www.icr.org/article/10918/

출처 - ICR, 2018. 10. 9.

미디어위원회
2018-08-14

성경에서 발견되는 식물(나무) 이야기

문흥규 


      임학(forestry)을 전공하여 평생을 이 분야에서 일해 온 나에게 성경에서 발견되는 식물이나 나무에 관한 이야기는 언제나 흥미를 자아낸다. 성경은 과학을 다루는 책은 아니기에, 과학적으로 실증하기에 어려운 내용이 있음이 사실이다. 하지만 몇 가지 내용들은 과학적 사실로도 분명한 것이기에, 성경을 읽을 때마다 진한 감동을 준다. 필자가 성경에서 발견한 몇 가지 식물(나무)에 관한 내용을 소개하며 같이 은혜를 나누고자 한다.

 

1. 매우 작은 유칼리 종자

유칼리나무는 700여 종이 되는 매우 많은 종류의 나무이다. 주로 열대지역에서 자라고 있으며, 생장이 빨라서 여러 회사에서 상업적인 조림을 하고 있다. 유칼리는 키가 2m 이하로 자라는 작은 관목의 형태에서, 60m 이상으로 자라는 큰 나무까지 다양하다. 흥미로운 것은 대부분의 유칼리 종자가 매우 작다는 것이다. 필자가 일하는 이곳에서는 유칼리 펠리타(Eucalyptus pellita)를 상업적으로 심고 있는데, 종자의 크기가 깨알보다도 작다(사진 1).

1g의 종자로부터 약 300~500본 정도의 묘목을 만들 수 있으니, 그 크기가 얼마나 작은지 알 수 있다. 이 유칼리 펠리타는 1년에 4~6m 정도 자라고, 5년 정도 자라면 키가 20m 이상이 된다. 이곳에서 심은 나무 중에는 20년이 된 것이 있는데, 키는 45m, 가슴높이 직경은 60cm로 매우 큰 나무임을 알 수 있다(사진 1). 흥미로운 점은 지금도 이 나무는 계속 자라고 있다는 것이다.

사진 1. 유칼리 펠리타(Eucalyptus pellita) 종자 및 생장. ➀종자 꼬투리(삭과), ➁정선된 종자, ➂발아된 종자, ➃20년생 성숙목의 생장(수고 45m, 흉고직경 60cm)

정말 놀라운 것은 그토록 작은 종자 안에 이렇게 크게 자랄 수 있는 나무의 모든 유전정보가 들어있다는 것이다. 이렇게 내재된 유전정보로 인해, 때에 맞게 나무는 키가 자라고, 부피가 커지며, 가지를 뻗고, 꽃을 피운다. 나중에는 수많은 종자를 맺는다. 경이로움이 아닐 수 없다. 이렇게 작은 종자 안에 수년 후 거목으로 자라는 모든 유전정보가 들어있다는 것은 창조주의 설계가 아니면 생각하기가 어렵다.

이에 반하여 울린(Ulin, Eusideroxylon zwageri)이라는 나무의 종자는 크기가 매우 크다. 울린나무는 강철나무(iron wood)로 알려져 있는데, 나무가 매우 단단하고 좀처럼 썩지 않아서 붙여진 이름이다. 그래서 이 나무로 건축을 하면, 수십 년이 지나도 부패하지 않고 그대로 유지가 된다. 나무가 워낙 단단하기 때문에 못이 잘 박히지 않고, 나무를 제재하기도 쉽지 않다. 이 나무의 종자는 크기가 매우 커서 직경 3~5cm, 길이 10~17cm에 달한다(사진 2). 종자를 싸고 있는 종피도 매우 두꺼워, 수년간 땅에 떨어져 있다가 알맞은 조건이 되면 싹이 터서 발아가 시작이 된다. 발아를 촉진하려면 종피를 인위적으로 깨트려서 종피가 제거된 종자를 심어야 발아가 된다(사진 2). 이 나무는 현재 멸종위기 종으로 보호되고 있는데, 나무의 가치가 워낙 크다 보니 과도하게 벌채하여 이용하였기 때문이다.  

사진 2. 울린(Ulin, ironwood) 종자 및 발아 묘목. ➀종자껍질, ➁종피가 제거된 종자, ➂발아중인 종자, ➃묘목 생장 

울린나무는 유칼리나무와 마찬가지로 동일하게 피자식물(속씨식물, Angiosperm)에 속하는 나무이다. 왜 이 울린나무는 그렇게 매우 큰 종자를 가지게 되었고, 반면 유칼리나무는 그토록 작은 종자를 가지게 되었는가? 진화론적인 해석이 궁금하다. 사실 모른다고 하는 것이 맞을 것이다.

하나님께서는 그 목적에 맞게 모든 나무들을 창조하셨다. 하나님이 창조주간 셋째 날에 땅은 풀과 씨 맺는 채소와 씨가진 열매 맺는 나무를 각기 종류대로 내라고 명령하신 말씀대로(창 1:11~12), 식물들은 이미 설계된 프로그램을 통해 자라게 하셨다. 감사하게도 우리 하나님은 모든 나무가 종류대로 자라는 것처럼, 질서의 하나님이시지, 혼돈과 무질서의 하나님이 아니시다.(고전 14:33a). 유칼리나무는 유칼리나무대로, 울린나무는 울린나무대로, 그 목적에 맞게 창조하셨고, 종자 또한 특성에 맞게 유전적 정보를 내재시켜 고유한 그 나무로 자라게 하신 것이다.


2. 식물의 광합성

광합성(photosynthesis, 光合成)이란 녹색식물이나 그 밖의 생물이 빛에너지를 이용해 이산화탄소와 물로부터 유기물을 합성하는 작용이다. 일반적으로는 녹색식물에 의한 에너지 변환 과정을 의미한다. 녹색식물의 세포에 들어 있는 엽록체가 광합성이 일어나는 장소이다. 엽록체는 5~10μm의 크기를 가지는 타원형의 기관인데, 엽록체 안에는 틸라코이드라고 하는 납작한 주머니들이 들어있으며, 그 주변은 스트로마라고 하는 액체로 채워져 있다. 광합성은 크게 명반응과 암반응이라는 두 단계로 나뉘는데, 명반응은 빛이 있어야 진행되는 반응이며, 암반응은 빛이 없어도 진행되는 반응을 말한다. 명반응이 일어난 후 암반응이 진행되는데, 명반응은 틸라코이드의 막에서 일어나고, 암반응은 스트로마에서 일어난다.

흥미롭게도 이 식물의 광합성을 묘사하는 내용이 성경에 나와 있다.

”그들은 마치 식물과도 같다. 식물이 햇빛을 잘 받아 싱싱하게 자라며 그 가지를 뻗고 뿌리를 돌 사이에 박아 튼튼하게 돌무더기에 엉겨 있을지라도 그 뿌리가 일단 거기서 뽑히기만 하면 그 곳도 내가 언제 너를 보았느냐는 듯이 못 본 척한다” (욥기 8:16-18, 현대인의 성경).

광합성의 기본 원리를 아는 사람이라면, 누구라도 이 성경 구절은 틀림없이 광합성의 원리를 담고 있음을 알 수 있을 것이다. 나무를 전공한 필자에게도 이 성경 구절이 반갑기 그지없다. 더욱이 BC 1,500년경에 쓰여진 욥기서의 말씀 중에 이런 광합성의 내용이 나온다는 것은 감동 이상을 주기에 충분하다. 성경을 열린 마음으로 읽으면, 뜻밖에도 이런 감동을 안겨준다. 


3. 적지적수(適地適樹)  

적지적수란 사전적인 정의로 ”알맞은 땅에 알맞은 나무를 골라 심음”을 말한다. 이것은 세계 어디에서나 동일하게 적용되는 조림(造林; 나무를 심는 일) 사업의 황금률이다. 현재 필자는 이곳 인도네시아 열대지역에서 나무를 심는 일을 하고 있다. 이곳은 연중 날씨가 덥고 비가 자주 오기 때문에, 나무가 자라기에는 최적의 장소이다. 그러나 이곳 열대지역에서도 ‘적지적수’의 개념은 언제나 중요하며, 그래서 토양 조건에 알맞는 나무를 심어야만 나무가 잘 자란다.

몇 년 전에 이곳 조림지에서는 자본메라(Jabon merah)라는 나무를 상당히 심었다. 자본메라는 인근 지역의 섬에서 잘 자라는 토착수종이었기에, 우리는 당연히 이곳에서도 잘 자랄 것으로 기대를 했으나, 이 나무는 몇몇 장소를 제외하고는 기대한 만큼 잘 자라지 못했다(사진 3). 어찌보면 적지적수의 원칙이 무시된 장소에 나무를 심었으니 나무가 잘 자라지 못하는 것은 당연한 일이었다.

사진 3. 자본메라(Jabon merah)의 5년생 생장비교. 좌: 비적지에 심은 나무로 생장이 나쁘다. 우: 같은 시기에 심은 나무로 ‘적지적수’되어 생장이 우수하다.

한국에서도 지난 수십 년간 치산치수의 녹화 사업을 통하여 이제는 어디에 가나 산야는 푸른 숲을 이루고 있다. 국립산림과학원 등 산림청 산하 유관 기관들이 적지적수의 원칙을 가지고 나무를 심어온 결과물이다. 깜짝 놀라게도 이 ‘적지적수’의 원칙이 성경에 나와 있다. 욥기서를 보자. 

”왕골이 늪지대가 아닌 곳에서 나겠느냐? 갈대가 물 없이 자랄 수 있겠느냐?” (욥기 8:11, 현대인의 성경)

이 말씀은 정확하게 적지적수의 원칙을 가르치고 있는 내용이다. 왕골은 늪지대가 적지여서, 늪에서 잘 자란다. 갈대 또한 물이 없이는 잘 자라지 못하며, 그래서 물이 가까이 있는 곳에서만 번성을 한다. 이 짧은 성경의 구절만큼 적지적수를 명쾌하게 설명해주는 곳도 없다. 나무를 연구하는 필자로서 깜짝 놀랄 기쁨을 준 성경 구절이기도 하다. 나무는 세계 어디에서나 적지적수로 심을 때 제대로 자랄 수 있다. 성경은 이 내용을 욥기서를 통해 정확히 기술하고 있었다. 할렐루야 ! 

 

4. 나무의 재생 

나무는 일반적으로는 종자(씨앗)로부터 발아되어 큰 나무로 자란다. 하지만 나무에 따라서는 꺾꽂이(삽목)를 통해서도 쉽게 번식이 되기도 한다. 이렇게 꺾꽂이로 번식하는 것을 영양번식(營養繁殖: 특별한 생식기관을 만들지 아니하고 영양체의 일부에서 다음 대의 종족을 유지하여 가는 번식), 혹은 무성번식(無性繁殖)이라고 한다. 나무 중에서는 빠르게 자라는 속성수인 포를러류, 유칼리나무류, 버드나무류 등이 대표적인 영양번식 수종들이다. 욥기서에 보면 이 꺾꽂이 내용이 정확하게 기술되어 있다.

”나무는 희망이 있나니 찍힐지라도 다시 움이 나서 연한 가지가 끊이지 아니하며 그 뿌리가 땅에서 늙고 줄기가 흙에서 죽을지라도 물 기운에 움이 돋고 가지가 뻗어서 새로 심은 것과 같거니와” (욥기 14:7-9)

이곳의 조림지에서도 이러한 나무의 재생기술을 통해 숲을 재생시키고 있다. 유칼리 펠리타(Eucalyptus pellita)를 수확기에 벌채하여, 맹아(sprouts, 나무의 그루터기에서 나오는 줄기)를 유도하여 큰 나무로 키우는 방법이다(사진 4). 성경은 과학책은 아니지만, 욥기서에는 이렇게 정확한 과학적 사실이 기술되어 있는 것이다. 성경은 하나님의 영감으로 기록된 정확무오한 놀라운 말씀이기 때문이다.

사진 4. 벌채 후 그루터기에서 싹이 나와서 자라는 유칼리 펠리타. ➀, ➁벌채된 나무에서 자라는 맹아(sprouts), ➂맹아로 유도되어 자라는 나무들 (이 방법은 숲을 조성하는 한 방법이 된다). 

5. 대표적인 약용식물 무화과나무 

무화과나무는 뽕나무과(Moraceae)의 무화과나무속(Ficus)에 속하는 나무이다. 무화과나무는 여러 가지 약리성분을 가진 나무로, 특히 열매가 달고 맛이 있어 우리들에게도 친숙한 나무이다. 

무화과는 아시아 서부 및 지중해 연안이 원산지인 아열대성의 반교목성 낙엽활엽과수로서, 재배가 쉽고 병해충 피해가 적은 편이다. 연평균 기온 15℃, 겨울 기온이 –9℃ 이상인 지역에서만 재배가 가능하다. 세계적으로 그리스와 이탈리아에서의 재배역사가 길며, 우리나라는 일본과 중국을 통하여 도입되었고, 현재 재배의 중심지는 미국 캘리포니아주, 이탈리아, 터키, 포르투갈 등이다. 특히 이탈리아와 그리스는 세계 총생산량의 2/3정도를 차지하고 있다. 우리나라에서 현재 경제적으로 재배되고 있는 곳은 전남 일부 지역에 국한되어 있고, 주로 가정에서 한 두 그루씩 심어 관상용으로 심어 열매를 이용하고 있으며, 제주도와 남해안 일대에서 재배되고 있다.

무화과는 효능이 많다. 칼로리는 약 100g에 54kal이며, 칼슘, 철분, 마그네슘과 같은 미네랄과 강력한 항산화물질인 비타민 A, K가 풍부하다. 식이섬유가 많고, 대장의 정장작용을 도와 변비에 좋다. 동의보감, 본초강목 등에서 맛이 달고 소화를 도우며, 입맛을 돌게 하면서, 설사를 멈추게 하고, 빈혈과 숙취효과가 있다고 기록되어 있다. 기타 수용성 식이섬유인 펙틴과 단백질의 분해를 돕는 피신성분이 있어, 변비와 소화기능 개선효과가 있다. 갱년기 증후군이나 생리전 증후군을 가진 여성들의 증상완화에 도움이 되는 것으로 보고가 되고 있다. 구약성경 이사야를 보면 무화과를 상처 치료에 이용한 사례가 기술되어 있다.

”이사야가 이르기를 한 뭉치 무화과를 가져다가 종처에 붙이면 왕이 나으리라 하였고” (이사야 38:21)

이사야서의 기록 연대는 약 BC 740~680년으로 지금으로부터 약 3,000년 가까이나 이전이다. 이렇게 오래 전에 무화과의 약리적 효과를 기술하고 있는 성경기록이 놀랍기만 하다. 무화과의 효능은 현대의 과학으로도 완전히 밝혀지지 않을 만큼 신비로움을 가지고 있다. 열린 마음으로 성경을 읽어보자. 그리고 우리가 배우고 익힌 전공을 통해 성경 말씀에 감추어진 놀라운 과학적 사실들을 발견하는 기쁨을 가져보자!

 

결론

필자는 임학을 전공하여 평생을 나무를 연구하며 살아왔다. 앞서 살펴본 성경에 나타난 식물(나무)들에 관한 과학적 사례들은 임학도로서 필자가 관찰한 제한된 몇 가지 예에 지나지 않는다. 욥기서에는 특히 과학적으로 탐구가 가능한 여러 사례들이 소개되어 있다. 우리 각자가 연구하거나 공부해온 전공분야에서, 성경에 나타난 이러한 사실들을 찾아보는 것도 흥미가 있을 것이다. 계절마다 바뀌는 형형색색(形形色色)의 나무와 식물의 아름다움을 볼 때 마다, 놀라운 창조주 하나님의 섭리를 생각하며, 감사하는 마음을 가진다.


출처 - ‘창조’ 지, vol. 194, 2018 여름호.

미디어위원회
2018-05-18

살아있는 오팔을 만드는 해초의 발견

(Scientists Marvel at Seaweed's Living Opals)

by Brian Thomas, Ph.D.


      무지개 난파선(rainbow wrack, Cystoseira Tamariscifolia)이라고 불리는, 흔한 갈조류 해초(brown algae seaweed)가 유럽 연안을 따라, 그리고 영국의 조석 지대의 바위들 사이에서 자라고 있다. 이 해양 식물은 세포 깊숙한 곳에서, 유성의 화학물질을 사용하여 오팔(opal)처럼 보이는 것을(살아있는 '오팔')을 만든다. 이 발견은 나노공학자들을 흥분시키고 있었다. (사진은 여기를 클릭).


오팔은 옅은 무지개 색을 띠면서, 하얗고 밝게 빛나는 것으로 유명한 보석이다. 오팔 내부 깊은 곳에서, 빛은 초소형의 극히 작은 공과 같은 구조들에 의해 반사되어 튀어 오른다.[1] 브리스톨 대학교(University of Bristol)의 보도 자료는 ”그러한 구조는 나노크기의 구체들이 규칙적인 방식으로 단단히 묶여져서 생겨난다”는 것이다.[2]

한때 지구상에 형성됐던 오팔은 나노구조가 고정되어 있다. 그러나 이 특별한 해초는 매일 무지개 생성을 위한 스위치를 켜고 끌 수 있다. 해초 세포는 하루 동안 변화하는 햇빛 조건에 반응하여, 초소형 구체들을 만들고 배열시킨다. 그 연구 결과는 Science Advances 지에 발표되었다.[3]


Science Advances 보고의 수석 저자인 마틴 로페즈 가르시아(Martin Lopez-Garcia) 박사는 말했다 :

”만약 나노공학자가 이러한 해초 오팔의 동력학적 특성을 이해하고 모방할 수 있다면, 우리는 미래에 물품 포장이나 매우 효율적인 저비용 태양전지에 사용될 수 있는, 생분해성, 스위치 장착형 디스플레이 기술을 가질 수 있다.”

이 해초를 모방한 포장에는 메모를 적기위한 ”디스플레이 기술”로서 유성(oily)의 글자는 사용되지 않을 것이다. 연구자들에 의하면, 아마도 ”엽록체에 도달하는 빛을 조절하는 방식으로 메모가 쓰여질 수 있다”는 것이다.[3] 나노공학자들이 오랫동안 알고 싶어했던, 독창적이고, 효율적이며, 전환 가능하며, 친환경적인, 초소형의, 천재적 기술이 작동되고 있었던 것이다.


연구자들은 Science Advances 지에서, ”여기에 보여진 질서정연한 3D 오팔 구조와 같은, 해초에서의 복잡한 광자 구조는 그 존재 자체도 놀랍지만, 더욱 놀라운 것은 이 복잡한 구조가 역동적(dynamic)이라는 사실이다.”[3]


브리스톨의 루스 올턴(Ruth Oulton) 박사는 '다음에 여름 방학 동안에 영국 해안가의 바닷물이 들어오는 암석 지대를 방문한다면, 첨단 나노공학 기술이 들어있는 이 놀라운 해초를 발견할 수 있는지 확인하라'고 말한다.

이것은 자연적 과정으로 결코 생겨날 수 없는, 오직 창조주만이 하실 수 있었던 일이다.

무작위적인 자연적 과정으로 이러한 해초가 생겨날 가능성은 없어보였기 때문에, 그것을 발견한 과학자들은 그렇게 놀랐던 것이다. 이러한 경이로운 나노구조는 자연주의적 과정으로는 결코 생겨날 수 없는, 자연 밖에 계시는 창조주만이 오직 하실 수 있었던 일이다. 창조 주간의 첫째 날에 빛과 아침, 저녁을 창조하셨던 창조주는 아침과 저녁 동안 빛을 전문적으로 조작하고 수확하는, 살아있는 오팔과 같은, 초소형의 나노기계들을 만드는 법도 알고 계셨던 것이다.



References
1. They form fast from bacterial action underground. See Thomas, B. Opals Can Form in Weeks. Creation Science Update. Posted on ICR.org July 25, 2011, accessed April 18, 2018.
2. New type of opal formed by common seaweed discoveredUniversity of Bristol News. Posted on bristols.ac.uk April 17, 2018, accessed April 18, 2017.
3. Lopez-Garcia, M., et al. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae. Science Advances. 4 (4): eaaan8917.

*Brian Thomas is Science Writer at the Institute for Creation Research


번역 - 미디어위원회

링크 - http://www.icr.org/article/scientists-marvel-seaweed-living-opals/ 

출처 - ICR News, 2018. 5. 7.



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광