그랜드 캐니언보다 큰 해저협곡들은 물러가던 노아 홍수의 물에 의해 파여졌다.

미디어위원회
2020-01-08

그랜드 캐니언보다 큰 해저협곡들은 물러가던 노아 홍수의 물에 의해 파여졌다.

(Submarine canyons bigger than Grand Canyon Carved as Noah’s Floodwaters receded)

Michael Oard

 

      그랜드 캐니언의 가장자리에 서면, 사람들은 그 거대한 깊이와 엄청난 규모에 경외심을 갖게 된다. 놀랍게도, 지구에는 이보다 더 큰 다른 협곡들이 있지만, 그것들은 물 아래에 있기 때문에 보이지 않는다(그림 1). 이 협곡들은 해안에서, 때로는 해안에서 멀리 떨어진 곳에 있는 해저협곡(submarine canyons)들이다. 해저협곡들은 노아 홍수의 격변적 영향을 가리키는 놀라운 지형이다.

그림 1. 뉴욕 근해의 7개 해저협곡들에 대한 음영 처리한 입체지도. 그 중 6개는 대륙붕(continental shelf) 가장자리에서 시작하지만, 왼쪽에 있는 커다란 허드슨 캐니언(Hudson Canyon)은 대륙붕도 움푹 파놓았다. (그림 내용 : McMaster Canyon, Ryan Canyon, Uchupi Canyon, Emery Canyon, Babyton Canyon, Jones Canyon, Hudson Canyon)


해저협곡은 바다에서 가장 깊은 곳인 마리아나 해구(Mariana Trench)와 같은 심해의 해구와는 다르다. 해구는 일반적으로 심해에서 해안선과 평행하게 뻗어 있다. 대조적으로 해저협곡들은 일반적으로 대륙붕에 있는 얕은 물에서 시작하여, 대륙 경계와 수직 방향으로 심해로 흐른다. 그것들은 물러가는 대홍수 물의 수로화된 흐름에 의해 침식되었다.[1]

해저협곡은 흔히 있는 사면 협곡(slope canyons)과는 다르다.[2] 사면 협곡의 평균 간격은 33km이고, 깊이가 100m보다 깊고, 약 6,000여개 있다. 거의 모든 사면 협곡은 가파른 대륙사면(continental slope)에 나있으며, 규모는 비교적 작다. 사면 협곡은 대홍수 이후 4500년이 지나면서 대륙붕 가장자리에 쌓여있던 느슨한 퇴적물이 주기적으로 사면 아래로 사태를 통해 밀려 내려감으로써 형성된 것이다.

그와는 대조적으로, 보다 큰 수백 개의 해저협곡들이 평평한 대륙붕 안에 파여져 있다. 이들은 항상은 아니지만, 종종 강물이 바다와 만나는 곳에서 발견된다. 그러므로 이들은 노아 홍수 후기에 홍수 물이 좁은 수로를 통해 빠져나감에 따라 침식된 협곡이다.


해저협곡들은 거대하다

대륙붕 상에 있는 해저협곡은 약 1m에서 300m 이상 되는 범위의 해양 깊이에서 시작된다. 대륙붕 가장자리 근처에서의 평균 깊이는 100m이다. 커다란 카브레톤 협곡(Capbreton Canyon)은 프랑스 해안과 수직을 이루지만, 스페인 북부 해안과 거의 평행을 이루는데, 이 협곡은 해안에서 불과 250m 떨어진 곳에서 수심이 30m 밖에 안 되는 곳에서 시작한다![4] 미국 캘리포니아 라호야(La Jolla) 외곽의 스크립스 협곡(Scripps Canyon)도 해변 가까이에서 시작되는데, 사실상 너무 가까워서 해안쪽으로 발달되었다면, 스크립스 해양학 연구소(Institute of Oceanography)의 부두가 협곡 안으로 붕괴됐을 정도이다.

해저협곡의 평균 길이는 50km 이상이다. 때로는 해저협곡이 그 퇴적물을 지나서까지 계속 뻗어 있어서, 해저 선상지(submarine fan) 상에 협곡을 형성한다. 이 선상지 협곡을 포함하면, 해저협곡은 훨씬 더 길어진다. 예를 들어 아프리카의 콩고 협곡(Congo Canyon)은 길이가 190km가 아니라 800km가 된다. 가장 긴 해저협곡은 베링 협곡(Bering Canyon, 알류샨 열도 근처)으로, 95km의 선상지 계곡을 포함하면 전체 길이가 약 500km(그랜드 캐니언보다 길다)나 된다.[5]

훨씬 더 관심을 끄는 것은 해저협곡의 깊이이다. 어떤 것은 그랜드 캐니언보다 더 깊고 더 넓다. 벽의 높이는 협곡의 아래로 가면서 변화하며, 양 측면은 거의 깊이가 같지 않다. 평균적으로 벽의 최대 높이는 약 900m로써 육지 협곡의 평균 높이보다 크다. 가장 높은 해저협곡의 벽은 캡브레턴 협곡(Capbreton Canyon)에 있으며, 최대 높이는 3,000m이다.[6]

미국 캘리포니아의 몬테레이 협곡(Monterey Canyon)은 세계에서 가장 많이 연구된 해저협곡일 것이다(그림 2). 몬트레이 만(Monterey Bay)의 모스 랜딩(Moss Landing) 부두 근처에서 18m 깊이의 물속에서 시작하여 96km 길이로 나있다. 그러한 다른 많은 협곡들처럼, 그 협곡은 해저 선상지로 이어진다(그림 3). 선상지 계곡을 포함하여 그 협곡의 전체 길이는 약 470km이다.[6] 최대 벽 높이는 1,700m이고, 이쪽 가장자리에서 저쪽 가장자리까지의 최대 폭은 12km로써 그랜드 캐니언과 비슷하다.

그림 2. 캘리포니아의 몬테레이 해저협곡(화살표)


해저 협곡과 연안의 강

흥미롭게도 대륙붕에 있는 많은 해저협곡들은 강에서 바다 쪽으로 발견되며, 해저협곡의 많은 특징들은 강의 계곡과 유사하다. 해저협곡에는 지류(tributaries), 곡류(meander, 사행천), 곡류 만곡부(meander loop), 말굽 모양의 곡류 절단(cutoff) 등이 있다.[7] 그렇다면 무엇이 이들처럼 강과 같은 독특한 특징을 만들었는가? 해저협곡과 육지의 강 사이의 관련성은 중요하지만, 협곡이 이들 강에 의해 직접 침식되어 형성됐다는 개념을 지지하지는 않는다. 대륙붕 표면이나 그 표면 아래에서 하천과 그에 인접해 있는 해저협곡은 직접 연결되어 있지 않다. 강은 해안선에서 갑자기 끝나고, 해저협곡은 앞바다에서 시작된다. 그리고 더 나아가, 이러한 특징들은 보통 심해에서 발견된다. 다시 말해서, 수위가 너무 깊어서 강물이 그것을 파냈다고 보기 어렵다. 이러한 특징을 유발한 원인이 무엇이든지간에 해저협곡을 파낸 것과 동일한 과정이었다.

그림 3. 몬테레이 해저협곡에서 앞바다로 향하여있는 몬테레이 해저 선상지(Melanie Richard 그림).


오래된 연대 지질학자들은 곤란을 겪고 있다.

동일과정설 지질학자들은 일반적으로 거대한 해저협곡은 퇴적물이 대륙 경사면을 따라 반복적으로 미끄러져내려 형성됐다고 말한다. 그러나 그 미끄러짐이 여러 개의 작은 협곡들을 만드는 대신에, 어떻게 한 장소에 자꾸 반복적으로 집중되어 거대한 하나의 협곡을 깊게 만들었던 것일까? 라스트라(Lastras)와 다른 사람들은 이렇게 말한다:

이러한 많은 노력에도 불구하고, 해저협곡의 위치, 발달, 활동 등에 대해 세계적으로 받아들여지고 있는 이론은 아직 없다.[8]


대홍수 말기의 수로화된 물에 의한 침식으로 설명하기

동일과정론자/오래된 연대론자들의 문제는 대륙붕 위의 한 위치에 대륙으로부터 침식된 퇴적물이 집중하는 과정이 결여되어 있다는 것이다. 그 과정은 퇴적물을 지속적으로 심해로 미끌어져 내려가도록 하는 데에, 그리고 해저협곡을 점차적으로 파내고 확장시키는 데 필요하다. 

그러나 노아 홍수 말기의 수로화된 침식은 이러한 물 아래의 해저협곡을 형성하는 데 필요했던 막대한 침식 에너지를 쉽게 제공한다. 대홍수 물이 대륙으로부터 빠져나갈 때, 그것은 계곡을 형성하며 연안 지역을 통해 수로화되어 흘러갔다. 그 속도와 침식은 너무도 커서, 퇴적물은 해안을 따라 흩어지기보다, 강이 파낸 계곡의 바다 쪽에 있는 대륙붕에 퇴적되었다. 퇴적물이 여기에 축적되면서, 계속해서 대륙사면 아래로 미끄러지면서 해저협곡을 형성했다. 퇴적물이 아래 방향 경사를 따라 미끄러지면서 속도는 가속화되어, 깊은 침식을 일으켰다.[9]

그림 4. 해저 협곡의 기원. 1-2: 물러가는 대홍수 물이 판(sheets) 상으로 흐르면서, 대륙연변에 퇴적물을 퇴적시킨다. 3-4: 수위가 떨어지면서 수로화 된 흐름이 해저협곡을 파낸다. 5: 현재 상황.

그림 4는 이 과정이 대륙붕 상에 어떻게 해저협곡을 형성했는지를 보여준다. 해저협곡과 관련이 있는 것은 오늘날의 강이 아니라, 연안의 계곡이었다는 것을 인식하는 것이 중요하다. 오늘날 강이 계곡을 통과해서 흐르는 것은, 단지 그것이 편리하기 때문이다. 해저협곡들은 성경의 대홍수가 역사적 사실임을 뒷받침하는, 전 세계적으로 퍼져 있는 또 하나의 증거물인 것이다.[10, 11]


*참조 : 지형학은 노아 홍수의 풍부한 증거들을 제공한다. : 산, 평탄면, 도상구릉, 표석, 수극, 해저협곡의 기원

http://creation.kr/EvidenceofFlood/?idx=1288470&bmode=view

자료실/대홍수/대홍수의 증거

http://creation.kr/EvidenceofFlood


References and notes

1. Walker, T., A Biblical geological model; in: Walsh, R.E. (Ed.), Proceedings of the Third International Conference on Creationism, technical symposium sessions, Creation Science Fellowship, Pittsburgh, PA, pp. 581–592, 1994; biblicalgeology.net.

2. Pickering, K.T. et al., Deep-Marine Environments, Unwin Hyman, London, U.K., pp. 133–159, 1989.

3. Harris, P.T. and Whiteway, T., Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins, Marine Geology 285:69–86, 2011.

4. Mulder, T. et al., Understanding continentocean sediment transfer, EOS, Transactions, American Geophysical Union 85 (27):257, 261–262, 2004.

5. Karl, H.A. et al., Aleutian basin of the Bering Sea: styles of sedimentation and canyon Arrows indicate flow of receding floodwater development; in: Gardner, J.V. et al., (Eds), Geology of the United States’ Seafloor—The View from GLORIA, Cambridge University Press, New York, NY, p. 305–332, 1996.

6. Green, H.G. et al., Physiography of the Monterey Bay National Marine Sanctuary and implications about continental margin development, Marine Geology 181:55–82, 2002.

7. Perkins, S., Hidden canyons: vast seabed chasms carved by riverlike processes, Science News 167:9–11, 2005.

8. Lastras, G. et al., Geomorphology and sedimentary features in the Central Portuguese submarine canyons, Western Iberian margin, Geomorphology 103 (3):310–329, 1 February 2009; quote on p. 311.

9. Mulder, T. and Alexander, J., The physical character of subaqueous sedimentary density flows and their deposits, Sedimentology 48:269–299, 2001.

10. Oard, M.J.,Geomorphology provides multiple evidences for the global Flood, Creation 37(1):47–49, 2015.

11. Further information and references related to the series of articles on landforms presented in Creation magazine can be accessed atcreation.com/landform-links.


*MICHAEL OARD, M.S.

has an M.S. in atmospheric science and is a retired meteorologist from the US National Weather Service. He has authored numerous books and articles on geology, including Exploring Geology with Mr Hibb. He is on the board of Creation Research Society and is widely regarded as an expert on Ice Age creation topics. For more: creation.com/oard.


출처 : Creation Magazine Vol. 41(2019), No. 3 pp. 48-51

주소 : https://creation.com/submarine-canyons-bigger-than-grand-canyon

번역 : 이종헌




서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2018-서울중구-0764 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광