LIBRARY

KOREA  ASSOCIATION FOR CREATION RESEARCH

창조설계

나무의 기원

나무의 기원

(The Origin of Trees)

Tom Hennigan and Jerry Bergman 


요약

  창세기에 의하면 나무는 창조주간의 셋째 날에 창조되었다. 성경적 관점에서, 이것은 나무는 다른 식물 형태와 불연속적임을 가리킨다. 자연주의자(진화론자)들은 나무가 단순한 광합성적 유기체로부터 무작위적인 과정을 통해 발생했다고 주장한다. 본문에서는 추정되고 있는 나무가 아닌 전구체 식물로부터 나무의 진화에 대한 화석 증거들을 평가했다. 결론적으로 화석 증거들은 나무가 아닌 식물 형태에서 나무로 진화되었다는 진화론적 기원을 지지하지 않는 것으로 나타났다. 화석기록에서 발견되는 초기의 나무들은 잘 발달되어 있었고, 단세포 조상에서 진화적 기원을 배경으로, 무수히 많은 기묘한 것들을 극복하기 위한 어떠한 가능성 있는 설명도 없다. 결론적으로 화석기록, 나무의 생태학, 대홍수, 복잡한 생화학적 시스템 등을 성경적 관점에서 분석해 보았을 때, 그러한 데이터는 하나님이 직접적으로 나무를 창조하셨다는 창세기의 설명과 일치했다.  


서론

나무는 역사와 문화에 걸쳐 강력한 생명의 상징이 되어왔다. 예로써, 투비쉐밧(Tu B' Shevat)은 유태인의 식목일로 쉐밧 월의 15일을 말하는데, 쉐밧(Shevat) 월은 이스라엘에서 겨울을 지나 봄이 시작되는, 나무가 다시 생명력을 얻는 달의 유태인 식 이름으로, 1월 중순과 2월 중순 사이에 해당한다. 유태인의 전통에 따르면, 투비쉐밧은 나무를 기념하는데, 왜냐하면 나무는 토라(Torah)를 상징하고, 아름다움과 활력을 나타내기 때문이다. 시편의 저자는 하나님의 교훈을 신뢰하고 살아가는 사람들을 비유하여, 견고하며 과실을 많이 맺으며, 활력 있는 생명력을 지닌 단단히 뿌리를 내린 나무와 연결시켜 표현하였다. 왜냐하면 그들은 생명의 원천에서 즙액을 받기 때문이다.


'나무(tree)'라는 단어[(Heb. ēets; Gr. déndron(xýlon)]는 '목재' 혹은 '나무'를 의미하는데, 성경에서는 약 300회 정도 언급되어 있는, 하나님의 주요한 창조물 중 하나이다(Tenney, 1967, p 869). 성경에는 적어도 30종 이상의 특별한 나무 이름들이 나온다(표 1에서 이러한 나무 종들을 예시했다). 히브리어와 그리스어(당시 지역에서 흔히 쓰던 이름)의 번역상 언어적 문제와, 그리고 나무 종과 성경의 단어 간에 직접적인 일치가 없기 때문에, 어떤 나무 종을 언급했지를 정확하게 밝혀내기는 어렵다(Oberpriller, 2011). 이상에서 언급한 언어적 난제 때문에, 예로써 소나무, 노간주나무, 편백류, 시더(ceder)로 밝혀진 나무들을 정확하게 식별하는 것은 어렵다. 창세기의 설명은 나무는 다른 영양생장 식물들과 불연속적이며, 단순한 조상 식물로부터 기원하지 않았음을 시사한다. 나무는 창조주간 셋째 날에 '종류(kinds)' 혹은 '바라민(baramin)' 대로 창조되었다. 창세기 6~9장은 전 지구적 대홍수가 역사적으로 실제로 일어난 일임을 기록하고 있는데, 그것은 전 세계적으로 발견되는 화석들의  집단적 무덤(대규모적인 생물들의 죽음)들을 설명하는데 도움을 준다. 그것은 창조론자들이 나무의 기원과 화석층에 대한 과학적 모델을 발전시킬 수 있는 기초가 되고 있다.

표 1. 성경에서 언급된 나무의 예들. (고해상도 사진은 원문을 클릭하여 보세요)  


한편, 신다윈주의적 진화론자들은 나무는 무작위적인 돌연변이들이 후손에 전해지는 자연적 과정을 통해 우연히 생겨났다고 추측한다. '진화'라는 용어를 논할 때, 신중하게 정의하는 것이 중요한데, 왜냐하면 그것은 파악하기 어렵고 혼동을 일으키는 단어가 될 수 있기 때문이다. 예로써, 자연선택, 돌연변이, 유전자 이동(표류, drift), 종의 분화(speciation), 대립유전자 빈도 변화와 같은 과정들을 각각 진화로 불러 왔기 때문이다. 비록 이러한 과정의 중요성에 대한 상세함과 정도(크기)가 창조론자와 진화론적 자연주의자들의 생각에서 다를 수 있지만, 각각의 것을 관찰할 수 있다는 점에서는 일치한다. 신다윈주의자들은 진화를 무작위적이고 간접적인 자연적 과정으로 정의하고 있고, 수억 년에 걸친 수많은 돌연변이들과 자연선택을 통해 비나무였던 광합성적 조상으로부터 나무가 만들어졌다고 생각하고 있다.


이에 반해 나무의 진화에 관한 창조론적 입장의 논문들은 거의 없다. 대부분 나무에 대한 창조론적 논문은 연대학적 논점에 관련된 것이었다(see Lammerts, 1975; 1983; Kreiss, 1985; Bergman and Doolan, 1987; Aardsma, 1993; Beasley, 1993; Lorey, 1994; Bates, 2003; Williams, 2004, and Woodmorappe, 2003). 카페지(Coppedge, 2003)는 나무의 유체-펌핑 시스템(fluid-pumping system)의 지적설계에 대하여 논했다. 하우(Howe, 1987b)는 산맥의 형성에 미쳤던 대홍수와 홍수 후의 지질학적 영향의 관점으로부터 식물 생물지리학에 있어서 창조론적 설명의 중요성을 논했다. 산들은 전 세계에 걸쳐 식물과 동물의 밀접한 관련에 영향을 주는 기후패턴 결정의 중요 요소로 잘 알려져 있다. 창조론과 진화론은 둘 다 서로 다른 가정으로부터 시작하기 때문에, 우리는 어떤 세계관적 추정이 실제 데이터와 더 잘 일치하는지를 조사해 보고자 한다.


나무의 중요성

나무는 육상에서 풍경(조망)의 최소 27%를 점유하며(Petit and Hampe, 2006, p. 188), 작은 집단으로 자라면 작은 숲(grove, copses)으로, 대면적에 걸쳐 고밀도로 자라면 산림(forest)으로 부른다. 나무는 그야말로 매우 다양하고, 그 수가 무수하다. 열대지방에서 극지방에 이르기까지 8만 종 이상의 나무들이 분포한다(Ennos, 2001, p. 5).

나무는 생물체에 중요한 역할을 수행하고 있다. 나무들은 미생물의 은신처, 탄소원의 흡수, 침식의 방지, 산소공급, 기후조절, 필수양분의 순환과 배분, 원재료의 제공, 대기정화 등을 포함하는 복합적인 상호의존 관계를 통해 생물 다양성을 유지시키는 생물권의 필수 요소이다. 텃지(Tudge)는 우리가 알고 있는 세계가 존재하기 위해서 나무가 가장 필요하다고 결론내렸다(2006, p.56).


형태 및 종 분류학

나무는 어떤 하나의 분류학적 존재가 아니며, 그들의 특성은 매우 다양하다. 그들은 많은 과(families)들로 구성되어 있고, 번식 시스템, 잎의 형태, 줄기의 생장, 껍질의 특성 등이 서로 다르다. 이러한 다른 특성들이 그들이 살고 있는 환경에 일치하고 있다. 그들의 분류적 상태를 복잡하게 하는 것은 나무와 관목의 분화(differentiation)에 있다. 나무는 하나의 줄기, 다년 생장, 지상 위의 줄기에서 2차 가지가 나오는, 목본식물로 정의된다(Figure 1). 성숙한 나무의 형태는 정아우세(apical dominance, 식물체에서 끝눈이 자라면 그 가지의 곁눈은 자라지 못하는 현상)로 특징되고, 거기에서 주간은 측지(lateral stem) 보다 우점한다.


그림 1. 스트로브소나무(Eastern white pine). 소나무과에 속하는 이 나무는 역사적으로  배의 돛, 목재, 크리스마스 트리, 의약용으로 계속 사용되어 왔다. 이 나무는 여러 가지 생태학적 측면에서 중요한 나무로, 다양한 유기물의 식량 공급원, 미국 대머리독수리, 미국 흑곰의 은신처가 된다. 정아우세(apical dominance)가 있어 단일 몸통 줄기(수간)로 자라는 특징이 있다(사진 : Tom Hennigan).


반면, 관목은 단일 수간보다는 기부에 많은 줄기들을 지닌, 직경이 작고, 여러 줄기에 많은 가지를 내는 목본식물이다(Figure 2). 정아우세가 없기 때문에, 덤불형태의 모양을 이룬다. 석류(Punica granatum)와 올리브(Olea europaea)와 같은 어떤 종들은 환경요소에 따라 관목과 교목의 형태를 가질 수 있다(Musselman, 2003).


그림 2. 타타르인 인동덩굴 관목(Tertarian honeysuckle shrub). (Division: Hagnoliophyta). 침입 수종으로 북미에 아주 흔하다. 관목 특징적이고, 수많은 작은 직경의, 단일 수간(몸통 줄기)이 아닌 목본성 하부줄기와 다간성의 여러 가지로 자란다(사진: Tom Hennigan).


나무는 장수하는 경향이 있고, 흔히 수백 년까지 자란다. 현존하는 가장 오래된 비영양체 나무는 무드셀라(Methuselah) 나무로 불려지는 미국 그레이트 베이슨 국립공원의 브리스틀콘(Great Basin Bristlecone pine, Pinus longaera)으로 나이테로 측정할 때 4700년 이상의 나이로 추정된다. 나무로 분류되기 위해서는 보통 높이가 3~6m 까지는 되어야 한다. 가장 키가 큰 나무는 자이언트 코스트 레드우드(giant coastal redwood, Sequoia sempervirens)로 꼭대기까지 116m에 이른다(Gymnosperm Data Base, 2010).

나무의 주요 기관은 목질의 수간, 뿌리, 잎, 가지로 구성된다. 이러한 특징적 설계 특성은 나무가 수직으로 머물러 있는 어려움을 해결하고, 바람에 부러지지 않으며, 수관으로 물을 끌어올리고, 건조를 피함으로써, 땅위에서 생존하도록 해준다. 나무의 생장률과 장수성은 2차 조직의 존재에 따라 달라지며 다양하다.

그림 3. 쌍자엽 수목인 피나무의 2차 목질부(X)의 절단 사진. 2차 목질부는 수분과 양료의 통로가 된다. 2차 체관부(P)는 식물 전체에서 유기물 합성을 수행한다. 체관부(phloem)와 2차 목질부 조직은 형성층의 분열세포로 생산되고 외생의 나무로 밖으로 자란다. 수(pith)는 양료의 저장과 운반 기능을 한다(사진: Jennifer Hennigan).


나무는 유관속 식물(vascular plants, 관다발 식물)로서 두 중요한 형태의 운송 조직을 가지고 있다. 그것은 체관부(phloem)와 목질부(xylem)이다(Figure 3). 체관부는 껍질(bark)의 가장 안쪽 층의 대부분 살아있는 조직이다. 그 부분은 필요한 곳에 유기 영양분을 운송한다. 1차와 2차 목질부는 물과 광물질의 운송 조직으로, 대부분 죽은 세포로 이루어져 있다. 1차 목질부는 세포의 키가 커지고 성숙해지는 1차 생장기 동안에 일어나고, 식물이 크게 자라는 원인이 된다. 2차 목질부(목재, wood)는 나무몸통(수간)의 직경이 증가하는 원인이 되는 2차 생장을 한다.

그림 4. 출처에 따라 다소 예외는 있으나 나무는 일반적으로 나자식물과 피자식물로 구분된다. 그림 4는 주요한 나자식물과 피자식물 과(family)들의 특징적인 나무 수종들을 예로 보여주고 있다.


체관부와 2차 목질부 조직은 유관속 형성층 내의 분열조직 세포에 의해 만들어지고(Figure 3), 외생적 나무(exogenous trees)에서 바깥쪽으로 성장한다. 외생적 나무는 나무 수종의 대부분을 구성하며, 침엽수와 활엽수가 포함되고, 나무의 몸체가 커짐에 따라서 생장 나이테가 더해진다. 이것은 야자수와 선인장 같은 내생적 나무와 구별이 된다. 내생적 나무는 줄기의 직경이 안쪽으로 자라서 나이테가 만들어지지 않는다.

몇 가지 예외적인, 그리고 원천(source)에 따라서, 나무는 일반적으로 나자식물 혹은 피자식물로 분류된다(Figure 4). 나자식물은 문자 그대로 '씨가 나출된' 것을 뜻하며, 미수정의 상태에서 배주(ovules)가 덮히지 않는 특징을 이룬다. 나자식물 문에는 : Pinpphyta (가문비나무, 소나무, 잣나무, 미국 삼나무, ceder, hemlock 등의 침엽수), Ginkgophyta (은행나무), Cycadophyta (소철류), 그리고 작은 나무와 관목으로 구성되는 도관요소와 꽃들이 현화식물과 매우 유사한  Gnetophyta ('paddy oats' (Gnetum gnemon) 등이 있다 (Gymnosperm Data Base, 2010).

대부분의 나무는 피자식물(Magnoliophyta 문)로 나무의 대부분이 꽃을 피우고, 미수정 상태에서 배주가 덮혀 있다. 피자식물은 더 세분화되어 쌍자엽식물(종자가 두 개의 자엽을 가지거나 활엽 수종처럼 배발생적 종자 잎을 가짐)과 단자엽식물(야자와 같이 종자가 하나의 자엽을 가지는 것)로 나뉜다.


나무의 기원과 화석기록

단순한 것에서 복잡한 것으로, 일반적인 식물 진화의 진화론적 예측은, 우리가 지질학적 지질주상도를 보는 것처럼 암석층위학과 밀접한 관련이 있다. 이것은 지층에서 화석의 차례(순서)를 만드는 기작이 있음을 암시한다(Wise, 2003). 후에 논의될 의문점은 진화가 그러한 순서를 설명하는 유일한 방법인가 하는 것이다.

많은 석탄기(Carboniferous) 지층에는 나무 양치류(ferns, Cyatheales 목), 속새류(horsetails, Equisetopsida 목), 석송류(lycopsids, Lycopodiophyta 문)를 포함하여 멸종된 산림의 화석화된 잔존물이 들어있다. 이 석탄기는 전 세계 대부분의 탄층을 형성한 시기로, 진화론적 시간 틀로 데본기와 페름기 사이의 대략 2억5천만~4억1천만 년 전 시기로 추정되고 있다. 화석 숲의 잔존물은 이 층에서 관측되고, 그들의 진화론적 역사의 대부분은 이들 화석들의 해석으로부터 왔다. 증거들은 일부 석송류들은 커다란 '떠다니던 숲(floating forests)'에서 자랐음을 암시한다(Scheven, 1996). 속새류와 석송류 형태는 오늘날 멸종되었지만, 양치류는 여전히 존재한다(Smith et al. 2006).

속새류 속새속(Equisetum) 중 현존하는 것에는 속새(horsetails)와 같은 독특한 식물이 있다. 이들 식물과 규조류는 유리(SiO2)로 포화된 세포벽의 독특한 특성을 공유한다. SiO2 때문에 속새는 거친 조직을 가지며, 미국 원주민들은 항아리를 문질러 닦는데 사용했다. 나무 형태를 포함하여 속새는 화석의 기록에서 갑자기 나타나며, 일부 멸종된 형태는 그 과의 현존하는 식물들보다 더 복잡하고, 발달된 포자가 달린 기관을 가진다(Howe, 1978a). 이러한 관찰은 진화론적 가정에 의해서는 예측되지 않던 것이다.

화석기록의 진화론적 해석에 따르면, 시아노박테리아가 최초의 광합성적 유기체로 35억년  전에 발생했다. 진정한 조류(algae, Kingdom Protoctista)는 24~18억 년 전에 생겨났고, 최초의 육상식물은 Protoctista에서 진화되어 4억6천만 년 전에 출현했고(McLamb and Hall, 2010), 그러한 초본성 초기 육상식물에서 나무가 진화되었다는 주장하면서, 고생물학자들은 나무가 3억7천만 년 이상 동안 육상 생태계에서 우점되었다고 말한다. 그것은 나무의 진화가 화석기록에서 잘 보존되어야만 하는 것을 뜻한다(e.g. Petit and Hampe, 2006, p 204).

최초의 숲은 Cladoxylopsids라 불리는 고사리 같은 나무로 구성되었다고 널리 인용되고 있다. 이 그룹의 최초의 나무는 와티에자(Wattieza)로 추정되고 있으며, 후기 데본기인 3억6천만~3억8천만 년 전에 출현한 것으로 해석되고 있다(Stein 등 2007; Jannot, 2009. p. 82). 1870년대에 뉴욕에서 완전한 수관(crown)이 발견되었는데, 그것을 재구성했을 때, 나무 높이는 최소 8m, 양치류 형태이고, 긴 가지가 있는 단일 나무 몸통과 복잡한 유관 조직을 지닌 뿌리 계를 지니고 있었다. 현재 Cladoxylopsidi는 베네수엘라, 벨기에 등에서도 또한 발견이 되어, 이러한 나무 형태가 폭 넓게 있었음을 시사해 준다.

또 다른 키가 큰 멸종된 나무는 아르카이옵테리스(Archacopteris)였다. 그것은 양치류와 같은 잎과, 2차 목질부를 지녔고, 데본기/초기 미시시피기 지층의 주요 식물계 구성원이었다(Muriel and Leponce, 2001;  University of California Museum of Paleontology, 2010). 이 나무들은 원나자식물(Progymnosperm)로 그룹이 되는데, 왜냐하면 그것의 2차 목질부가 원형 경계의 유사벽공을 지녔지만, 현재의 나자식물과는 동일하지 않기 때문이다(University of California Museum of Paleontology, 2010). 이것 때문에 많은 진화론자들은 이러한 나무들이 현대 나자식물의 먼 친척이라고 믿고 있다. 2007년에 와티에자가 발견되기 전에는 아르카이옵테리스가 가장 최초의 나무라고 생각됐었다. 아르카이옵테리스는 Cladoxylopsidi와 동시대에 살았지만 형태적으로 너무 달라서, Cladoxylopsidi가 아르카이옵테리스의 진화 고리였다는 어떤 주장도 제기되지 못했다.


그림 5. 화석화된 나무(Genus Cordaites). 석탄기 말기의 쟈긴스 화석 절벽(Joggins Fossil Cliffs)에서 발굴된 것이다. 이 나무는 2차 목질부, 종자 혹은 화분낭의 구과 형태의 솔방울이 있고, 웅성과 자성의 성세포를 만드는 발달된 포자 시스템을 지녔다. 화석 증거는 이전에 생각했던 것보다 훨씬 더 다양하고, 여러 서식지에서 나타남을 시사한다. 이 나무의 나자식물과 다른 식물형과의 불연속성은 그 나무의 진화계통수 위치를 결정하는데 계속 문제가 되지만, 지적설계의 추정에 기초한 창조론적 예측과는 일치하고 있다(사진: Ian Juby).


멸종된 침엽수 같은 나무의 동시대에, Cordaites 속 (Figure 5) 식물이 후기 석탄기 동안에 번성했다. 이 큰 나무들은 2차 목부, 종자 혹은 화분낭을 지닌 솔방을 같은 구과,  그리고 ”종자에 들어있는 것과 동일한 웅성과 자성의 성세포를 만드는 발달된 자실체 시스템”을 지녔다(Jennot, 2009, p. 82. 참조: Palaeobotanical Research Institute, 2010). 화석의 증거는 그들이 이전에 생각했던 것보다 훨씬 더 다양하고, 여러 환경에서 나타날 수 있었음을 보여주었다. 그것들의 나자식물과 다른 식물형과의 불연속성은 그것을 다른 나무와의 계통발생적 위치를 결정하는데 있어 계속적인 문제가 되어왔지만, 직접적인 설계를 전제로한 창조론자의 예측과는 잘 부합이 된다.


그림 6. 평탄해진 화석외형(Genus Lepidodendron). 쟈긴스 화석절벽(Joggins Fossil Cliffs). 이것들은 세계도처의 석탄더미에서 흔한 화석으로 연대는 후기 데본기이다. 수간(나무 몸통)에 다이아몬드 모양의 엽흔이 있어 비늘나무로 불리기도 한다. 포자에 의해 생식을 하고, 높이 30m 이상 자라고, 직경 1m 이상의 수간으로 커진다. 지질학적으로 말하면 이 너무들은 밤사이에 사라진 것처럼 보이는데, 그것이 현대의 나무형태로 진화되었다는 어떠한 증거도 없다(사진: Ian Juby)


석송문(Lycopodiophyta, Lycophyta)은 가장 오래된 살아있는 유관속 식물 문으로 여겨지는데, 진화론자들은 약 4억1천만 년 전으로 연대를 추정한다(McElwain 등 2002). 인목(Lepidodendron) (Figure 6), 그리고 시길라리아(Sigillaria) (Figure 9) 속과 같은 석송문의 멸종된 침엽수 나무들은 전 세계의 석탄층 화석으로 흔하며, 데본기 말로 연대가 추정된다(Wang 등, 2002). 인목은 수간에 다이아몬드형 엽초(leaf scars)가 있기 때문에 인편나무로 불리는데, 포자에 의해서 번식이 되고, 30m 이상으로 키가 자랄 수 있고, 직경 1m 이상으로 수간이 커진다(Stewart and Rothwell, 1993, p. 128). 일부 관찰자들은 그들이 현대의 거대한 석송류(석송과 물부추) 같다고 하며, 이러한 이유로 진화론적으로 관련을 지어 해석을 한다. 그들은 어떤 목재를 생산하지 않지만, 분명 나무가 나이가 들면서 직경이 자라는 껍질과 같은 것으로 지탱된다. 이 거대한 나무의 '잎들'은 키 큰 나무 꼭대기의 소나무 침엽 같으며, 똑바르고 전봇대 같은 나무 몸통을 지녔다. 레이븐(Raven)은 이러한 나무들이 대부분 ”지리적으로 말하면, 한밤중에 거의 모두 사라졌다”며, 그것이 현대의 나무 형태로 진화되었다는 그 어떠한 증거도 없다고 지적하였다(Raven 등, 1986, p. 324).


나무의 진화에 대한 자연주의적 설명의 문제점들

나무 진화에 대한 고전적 교과서는 다수의 고대 나무들의 삽화를 싣고 있는데, 그들 모두는 멸종되었거나, 혹은 현대의 나무와 거의 완전히 동일한 것이고, 나무의 진화를 가리키는 증거는 전혀 없다(Berry, 1923). 심지어 고대 나무의 종자(씨앗)라 하더라도, 실제로는 현대나무의 종자와 거의 구분이 안 된다. 베리(Berry) 교수는 백악기 전기로부터 소나무 솔방울(pinecones, 구과)의 대량의 수집을 통해, ”현존하는 레드우드(redwood, 미국 삼나무)의 솔방울과 거의 형태적으로 동일하며, 현재는 건조한 불모지인 미국 서부 다코다의 쿨리(coulees) 지역에서 풍부하게 발견된다”고 적었다(Berru, 1923, p. 41).

또 다른 예로 울레미 소나무(Wollemi pine, Figure 7)는 호주에서 몇 년 전에 살아있는 것이 발견될 때 까지는 공룡과 함께 멸종된 것으로 생각했었다(Bardell, 2006; Wieland, 2003, pp 8–9). 울레미 소나무는 2억 년 전에 출현했다가 멸종된 것으로 오랫동안 생각해오고 있었다. 과학자들은 울레미 소나무가 2억년 동안 변하지 않은 채 살아있는 것은 기적이라고 결론내렸다. 그러나 사실 그것은 오늘날 소위 ‘살아있는 화석’의 수천 가지의 실례 중의 하나일 뿐이다.


그림 7. '살아있는 화석'인 울레미 소나무가 수년 전 발견되었는데, 그것은 조금의 변화도 없이 그들의 화석 조상과 완전히 동일했다. 2억 년 전에 출현했다가 멸종된 것으로 생각했던 나무가 2억 년 동안 변하지 않은 채 생존해있었다는 것은 불가사의한 일이라고 과학자들은 결론지었다. 사실, 그것은 오늘날 알려져있는 수천 가지의 소위 살아있는 화석들 중 단지 하나일 뿐이다. 그리고 진화론적인 화석의 예측을 지지하지 않는다, A는 가지 끝의 침엽수 같은 잎을 보여주고, B는 중간을 확대한 것이다(사진: David Oberpriller).


이상의 이유로 볼 때, ”나무의 진화는 거의 불확실한 방식의 그림으로만 제시될 수 있었을 뿐이다”(Johnson, 1971, pp 24-25). 비록 분류학과 계통발생학이 다윈시대 이래 계속되어 왔음에도 불구하고, 단세포 전구체로부터 진화 과정을 통해 연속적으로 나무가 생겨났다는 주장은 화석 증거로 지지되지 못하고 있다(Johnson, 1973, p. 24).


화석 기록은 나무와 비나무간에 연속성이 없음을 분명히 보여주고 있음에도 불구하고, 진화론자들은 자연주의적 가정을 통해 연속성이 있음에 틀림없다고 추측한다. 왜냐하면 그들은 계통발생학과 화석 순서는 고도로 상관성이 있고, 시간에 따라 기관의 복잡성이 증가되었음을 나타낸다고 추정하고 있기 때문이다. 지층을 여행하면서 진화적 시간을 여행하는 것으로 억측을 하고 있는 것이다. 화석 나무의 연대측정에서 내재한 수많은 문제점들 많은 억측가운데서, 진화가 일어나기 위해서는 장구한 절대적 시간이 필요하다는 것은 전혀 언급되지 않고 있다(Baumgardrer 등, 2003; Humphreys 등, 2004, Vardiman 등, 2003; Woodmorappe, 2001).

         
나무의 기록과 화석 기록

현존하는 나무들은 매우 다양하고 다양한 환경에서 기능할 수 있도록 설계된 설계 시스템을 가지고 있다. 예로써, 목질부의 해부구조는 그 나무가 자라는 생태지역(해안, 소택지, 사막 등)에 따라 구조적으로 나무마다 다르다(Howe, 1978). 비록 환경에 따라 유사성이 있지만, 흔히 나무는 각각 형태적으로 독특하다. 생물권에서 수행되는 많은 중요한 생태학적 역할과 비목본 식물과의 불연속성 때문에, 성경적인 설명은 화석 기록과 일치한다. 유관속 식물 그룹을 비교했을 때, 유관속 조직 모형이 대부분 식물군 전체에 걸쳐 분포하는 것으로 나타나, 어떠한 유관속 패턴이 조상인지를 결정하기는 어렵다(Howe, 1965. p. 16). 따라서, 진화 가설에 대한 강력한 대안적인 관점은 목질부와 체관부가 ”창조주에 의해서 원래부터 확립된 유전적 범위 내에서 생리적 법칙에 의해 조절된다”는 것이다(Howe, 1965. p. 17).


지층 암석에 수십 억 년의 시간이 흘렀다는 해석 대신에, 창조론자들은 대홍수(창세기 6~9장)의 결과로 두터운 퇴적지층들이 생겨났다고 해석한다. 만약 대홍수가 실제로 발생했다면, 수십억 개의 화석들이 생성되었을 것이고, 대륙에 광대한 넓이의 퇴적과 융기의 증거들이 흔하게 발견될 것이다(Snelling, 2008). 넓은 지역에서 규화작용(silicification)과 목탄화작용(charcoalification)을 겪은 화석 나무들을 주의 깊게 연구한 결과, 증거들은 화석기록의 대홍수 모델과 일치되었다(William and Howe, 1993; ...Williams, 1993; Williams et al., 1993; 1993b Williams et al., 1995; Howe et al., 2003).


쉐븐(Scheven, 1996)은 그러한 화석기록은 대륙 크기의 석송나무들로 주로 구성된 물 위에 떠다니던 산림 생태계를 나타낸다고 주장했다. 이러한 석송류는 일반적인 나무들과는 다른 우묵한 스티그마리아식 뿌리, 또는 근상체(rhizophores)를 가지고 있다(Figure 8). 그들은 스티그마리아(stigmaria)라 불리는 원통형 뿌리 표면 주위에 나선형으로 분포한 수많은 곁뿌리들을 가지고 있다. 토양에서 아래쪽으로 자라는 전형적인 뿌리들 대신에, 이 2차 뿌리는 원통 주변을 방사성으로 나있는데, 이러한 뿌리 형태는 오늘날 수생식물에서 발견되는 뿌리와 유사하다.(아래 관련자료 링크, ‘물 위에서 자랐던 숲’ 참조). 이러한 정렬은 이들 식물이 수생의 생태계에서 살았음을 시사한다. 초기의 원시적 나무로 해석하기 보다는 석송류의 해부학은 수중 생태계에 번성하도록 설계된 수생식물로서 보다 잘 이해되는 것이다. 쉐븐은 한걸음 더 나아가 대홍수 초기에 이러한 거대한 식생이 떨어져 나가고 물 위에 떠다니게 되었다는 가설을 제시했다. 홍수가 물러감에 따라 이러한 거대한 매트(mat)들은 대량의 침전물 속으로 묻혔고, 오늘날 관찰되는 많은 석탄층을 만들었다는 것이다. 이러한 거대한 통나무 매트들의 매몰은 전 지구적 규모의 석탄 형성에 관한 창조론자들의 설명과 또한 일치되는 것이다(Austin, 1979).


그림 8. 흔하지 않은 속이 빈 스티그마리아 뿌리(stigmarian root, 우측)과 사방으로 퍼진 잔뿌리(좌측). 수많은 흔적들이 스티그마리아로 불리는 뿌리 같은 원통의 표면 주위에 나선형으로 분포해 있다. 그들은 오늘날 수생식물에서 발견이 되는 뿌리와 유사하다. 초기의 원시나무로 해석되기 보다는, 석송(lycopod)의 해부구조는 수생의 생태계에서 번성하도록 설계된 나무로 잘 이해된다(사진: Ian Juby).


대규모로 급속히 매몰된 또 다른 예로서 다지층나무 화석들은(Figure 9, 10) 전 세계적으로 발견되고 있는데, 이것은 대홍수와 통나무-매트 모델과 일치한다. 다지층나무(polystrate trees)는 하나 이상의 지층을 관통하며 묻혀있는 화석화된 나무들이다(Oard and Gieseckle, 2007). 룹케(Rupke, 1966)는 다지층나무 화석들은 과거에 일어난 독특한 '대격변'의 퇴적 과정을 가리키는 증거라고 주장했다. 다지층나무와 동물 화석들은 서있는 채로 발견이 되며, 6~9m 길이의 다양한 화석들이 여러 각도로, 2~12개의 다른 지층들을 가로지르고 있다는 것이다(Rupke). 이 나무들은 꼭대기에서 바닥까지 잘 보존이 되어 있었고, 내부의 현미경적 구조 역시 흔히 잘 보존되어 있기 때문에, 그것들은 신속히 매몰되었고, 부패 미생물로부터 빠르게 차단되었음을 나타내고 있다.


지구상의 여러 곳 가운데 특별히 두 곳이 유명한데, 한 곳은 캐나다 노사 스코샤(Nova Scotia)의 쟈긴스(Joggins) 지층이고, 또 하나는 미국 워싱턴 주의 은행나무 화석숲 주립공원(Gingko Petrified Forest State Park)이다. 쟈긴스 지층은 초기 펜실바니아기 지층으로 분류되며, 수많은 석송나무들이 있는데, 이들은 여러 얇은 석탄층들을 관통하며 5~6m 크기로 묻혀있다. 이러한 얇은 석탄 박층들은 흔히 사암과 모래 점판암 사이에 끼어있고, 대규모의 또 다른 급속한 매몰을 가리킨다(Rupke, 1966). 은행나무 화석숲 주립공원의 다지층나무들은 광범위한 기후대(열대에서 북부 온대까지)의 200종 이상의 나무들로 구성되어 있으며, 신생대 마이오세(Miocene)의 현무암층을 통과하여 확장되어 있다(Oard and Gieseclce, 2007). 발견된 다지층나무 화석들은 유칼립투스(Eucalyptus spp.), 티크(Tecktona spp.), 독일가문비류(Picea spp.), 자작나무류(Betula spp.) 등이 있다.

그림 9. 쟈긴스 화석 절벽에 있는 다지층나무 화석인 석송(과 - Lycopodiophyta, 속 - Sigillaria). 석송은 나무에 유사한 식물로 때로는 수간이 분기하고, 키가 크며, 목재(wood)가 없다. 다지층나무는 전 세계적으로 발견되며, 대규모적인 급격한 매몰의 또 다른 증거가 되고 있으며, 노아 대홍수와 물위에 떠다니던 통나무 매트 이론과 매우 잘 일치한다. 다지층나무는 화석 나무로 여러 지층에 결쳐서 나타나며, 흔히 나무의 하부에서 꼭대기까지 잘 보존되어 있고, 나무들은 급격히 매몰되었고, 부패 유기물로부터 격리되어 봉인되었음을 보여주고 있다(사진: Ian Juby).


그림 10. 테네시 주의 석탄광산에서 발견된 다지층나무 화석(Lycopodiophyta 과, 아마도 Lepidophloios 속에 속한다). (사진: Ian Juby).


와이즈(Wise, 2003)는 현대의 소택지(bog, 습지)에 대한 분석을 이용하여 쉐븐의 가설을 더욱 뒷받침했다. 식물의 화석기록에 대한 진화론적 추정은 지구의 층서학과 밀접한 연관성이 있음을 인정하면서, 그는 진화 순서라기보다 생태학적 대상 분포(zonation)가 화석의 순서를 보다 잘 설명할 수 있음을 제안했다. 그는 단순한 것에서 고등한 식물로 진화적인 발달을 보여주기 보다는, 실제로 관찰되는 것은 물 근처에서 가깝게 자라던 식물로부터 내륙에서 자라는 식물로의 생태학적 진행을 보여주고 있다고 제안했다. 이것에는 선나자식물, 초본성 석송류, 내륙의 숲을 이루는 수목성 석송류들이 포함된다.


일반적으로 창조론자들은 모든 주요한 나무 과(families)들은 태초 이래로 그들 각각의 환경에서 존재했고, 워싱턴 주에서 발견된 다지층나무 화석과 같은 증거들이 계속 발견될 것을 예상한다. 또 다른 예는 3억2천만 년 전으로 추정되는 석탄기의 석탄에서 화석나무의 송진(resin)이 발견된 것이다. 이 시기는 피자식물이 진화되기 이전으로, 석송류가 소택지와 숲을 지배했던 것으로 추정되고 있던 시기이다(Oard, 2010). 그러나 발견된 송진의 화학 조성은 피자식물의 화학 조성과 일치했다. 이것은 진화론이 아닌 창조론적 예측과 일치하는 것이다.
    

극도로 복잡한 생화학적 시스템들

많은 진화론자들은 나무들은 수렴진화(convergent evolution)를 통해 여러 조상들로부터 여러 번 진화되어 왔다고 억지스러운 결론을 내려왔다(Ennos 2001, p. 5). 다양한 서식처와 기후에서 나무들이 기능할 수 있도록 해주는 복잡하고 다양한 생체 기계들의 생산과 화학적 과정들이, 그리고 이것을 암호화하고 있는 고도로 복잡한 유전적 시스템이 무작위적인 자연적 과정으로 한 번 일어날 가능성도 없는데, 이러한 것들이 여러 번 동일하게 일어났을 것이라는 주장은 매우 불합리하며 논리적 근거가 희박하다. 그러한 결론을 이끌어내기 위한 어떠한 비슷한 증거나 근거도 없다. 나무의 유전적 시스템과 분자기계들은 사람의 최첨단 공학기술을 훨씬 능가하는 것으로, 경험상 그러한 복잡한 상호의존적인 시스템들은 지적설계자를 필요로 함을 우리에게 알려준다.


그림 11. 세포엽록체(2500 X). 엽록체에서 발견되는 유전적 시스템과 기계들은 인간의 기술혁신을 훨씬 능가한다. 과학지식은 우리에게 그것이 매우 복잡하며, 지적 설계자를 필요로하는 상호의존적 시스템으로 구성되었음을 알려준다(사진: Mark Armitage).


나무가 날마다 수행하고 있는 엽록체의 광합성 시스템을 생각해보라(Figure 11). 이 시스템은 물 분자를 수소와 산소로 쪼갠다(Sarfati 2008, p. 125). 물을 쪼개는 것은 막대한 양의 에너지를 필요로 하며 잎의 구조를 파괴하지 않고 수행되어야만 한다(2008, pp 126~127). 나뭇잎은 광시스템 II로 불리는 일련의 단백질 복합체를 가지고 있다. 하나의 양자가 이 복합체를 때리고, P680 엽록소로 유도된다. 하나의 전자가 주위에서 얻은 CO2로부터 당을 만들기 위해 소실된다. P680은 소실된 전자를 대체해야만 하는데, 그렇지 않으면 광합성은 멈추고 식물은 죽게 될 것이다. 대체된 전자는 촉매 중심부에서 오는데, 그것은 독특하게 배열된 망간(Mn), 칼슘(Ca), 그리고 하나의 망간에 부착된 4개 산소(O)의 원자로 구성되어 있다. 이 분자 입방체는 4단계로 에너지를 만들기 위해 설계되어 있는데, 망간으로 하여금 물 분자로부터 광합성 과정에 필요한 전자를 제거하도록 해준다. 이러한 4단계는 잎이 광합성 과정에서 파괴되지 않도록 조절된 양으로 에너지를 농축하는데 도움을 준다.


일단 망간이 전자를 제거하면, 수산화물(OH)과 수소(H+)가 만들어진다. 이 4단계에서 망간은 OH를 O와 H+로 쪼개기 위한 충분한 에너지를 가진다, 칼슘원자가 중요한 역할을 하는 곳이 바로 여기이다. 칼슘은 적소에서 또 다른 물 분자를 붙잡아 단일 O 원자가 화학적으로 그것과 반응하도록 하여 O2와 두 개의 H+ 원자, 그리고 전자를 만든다. 이러한 독특한 Mn3CaO4-Mn 입방체는 모든 식물과 조류, 시아노박테리아에 존재한다. 이러한 ‘한 요소도 제거 불가능한 복잡성(환원불가능한 복잡성)’을 지닌 광합성 과정은 모든 요소들과 시스템들이 모두 제자리에 있지 않다면 기능을 할 수 없다. 그러한 극도로 복잡한 시스템들이 오늘날 현존하는 다양한 식물들의 수많은 공통조상들에서 여러 번 일어났다는 것은 말할 것도 없고, 언젠가 한 번 일어났었을 것이라는 추정도 신다윈주의의 자연적 과정으로는 절대로 만들어질 수 없는 것이다.


결론

화석기록에서 존재하는 최초의 나무는 분명히 나무였다. 더욱이, 나무와 모든 다른 식물의 형태 간에는 엄청난 간격이 존재한다. 나무는 독특한 창조물이며, 우리가 알고 있는 것처럼 생명체를 위해 설계된 생물계의 중요한 부분이다(Bergman 2002). 화석기록을 면밀히 조사해 볼 때, 나무의 기원은 성경의 기록과 잘 일치한다. 우리의 과학적 이해는 이 세계가 창조되었는지, 그리고 누가 창조하셨는지를 보다 잘 이해할 수 있도록 해준다.


여전히 많은 연구가 이루어져야 한다. 어떻게 나무가 변화하는 환경적 교란에서 반응하고 지속될 것인가와 같은 수많은 흥미로운 질문들이 아직 조사되지 못하고 있다. 창조물들이 지속될 수 있도록 하나님이 설계하셨음을 가정할 때, 어떻게 유전적, 생태적 메커니즘을 결합시켜, 나무가 빠르게 다양화하도록 하셨을까? 나무의 건강 측면에서 균근 곰팡이의 공생적 관계에서 역할은 무엇일까? 나무는 어떻게 다양화되었을까? ”그 종류대로”에서 종류의 범위는 어디까지 일까? 생태계의 기능은 무엇일까? 하는 여러 궁금증들이 생겨난다.(Loucks, I.S. 2009; Hennigan, 2009). 창조생물분류학(baraminology)’에서 히브리어 ‘바라(bara)’는 창조하다이고, ‘민(min)’은 ‘종류’로서, 그 단어는 ‘창조된 종류’를 뜻하며, 1941년 프랭크 마쉬(Frank Marsh)에 의해 만들어졌다. 민(min)이란 단어는 잘 이해되지 못하고 있는데, 그래서 많은 유태인 학자들은 그것의 의미를 찬성하지 않는다(Turner, 2009). 그 단어는 역사의 한 시점 혹은 기간에 이들 특성의 어떤 결합으로 건강한 후손을 만들 수 있었던 생물학적 특성을 가진 지역으로 제한될 수 있다.(Wood and Murray, 2003). 그러면 태초에 하나님이 창조한 나무의 ‘바라민(baramin)’은 어떻게 구성이 되었을까? 예로써, 미래 창조과학 연구의 매력적인 분야는 나무의 교잡 데이터를 하나로 종합하는 것이 될 것이다. 서로 교잡이 가능한 많은 나무들이 있는데, 침엽수군 수종과 포플러군 내의 수종들이 포함된다. 창조생물분류학에서 교잡될 수 있는 능력은 나무 분류군 간의 밀접한 생화학적 관련을 암시하며, 최초 '종류' 내의 한 조상으로부터 다양화됐다는 중요한 부가적인 증거가 될 수 있을 것이다.


하나님이 생명에 관해 아담과 하와를 가르치셨을 때 사용하셨던 특별한 나무를 생각해보면 많은 통찰력을 얻을 수 있다(George Howe, 2001, 개인교신). 예를 들면, 하나님은 선과 악을 알 수 있는 나무를 창조하심으로서, 완벽한 세계에 선택의 원리를 불어 넣으셨고(창 2:16-17), 우리가 이 생명을 가지고 어떻게 살아가야만 하는지에 대한 강력한 비유로 나무를 사용하셨다.뿌리 깊은 나무와 마찬가지로 우리의 삶은 주님의 능력과 풍성한 목적을 나타내도록 예수 그리스도 안에 뿌리를 내려야만 하는 것이다.



References
Aardsma, G.E. 1993. Tree ring dating and multiple ring growth per year. CRSQ 29:184–.189.
Austin, S.A. 1979. Depositional environment of the Kentucky no. 12 coal bed (middle Pennsylvanian) of western Kentucky, with special reference to the origin of coal lithophytes. Ph.D. Diss., Pennsylvania State University, Pittsburgh, PA.
Bardell, D. 2006. The biologists forum: the discovery of a tree (Wollemia nobilis) from the age of the dinosaurs. BioOne 77:20–.23.
Bates, G. 2003. Patriarchs of the forest. Creation 25:10–.13.
Baumgardner, J.R., A. A. Snelling, D. R. Humphreys, and S. A. Austin. 2003. Measurable 14C in fossilized organic materials: confirming the young earth creation-flood model. In Ivey, R. (editor), Proceedings of the Fifth International Conference on Creationism, pp. 127–.142. Creation Science Fellowship, Pittsburgh, PA.
Beasley G.J. 1993. Long-lived trees: their possible testimony to a global flood and recent creation. TJ 7:43–.67.
Bergman, J. 2002.The evolution of plants: a major problem for Darwinism. TJ 16:118–.127.
Bergman, J., and R. Doolan.1987. The oldest living things. TJ 10:10.
Berry, E. W. 1923. Tree Ancestors. Williams and Wilkins, Baltimore, MD.
Coppedge, D. 2003. Trees, water pumps extraordinaire. Creation Matters 8:9–.11.
Ennos, R. 2001. Trees. Smithsonian Institution Press, Washington, DC.
Gymnosperm Data Base. 2010. <http://www.conifers.org/cu/se/index.htm> (accessed
May 24, 2010).
Harlow, W.H., and E.S. Harrar.1969. Textbook of Dendrology. McGraw-Hill, New York, NY.
Hennigan, T. 2009. Toward an understanding of arbuscular mychorrizal fungi: implications for godly stewardship and sustainable agriculture. Answers Research Journal 2:21–.28.
Howe, G.F. 1965. Homology, analogy, and creative components in plants. CRSQ 2:14–.21.
Howe, G.F. 1978. Do plant vessels vary with climate? A plumbing problem. CRSQ 15:71.
Howe, G.F. 1987a. Horsetails (Equisetum sp.): design or evolution? CRSQ 24:141–.143.
Howe, G.F. 1987b. Mountain moderated life: a fossil interpretation. CRSQ 24:9–.12.
Howe, G.F., E.L.Williams, and C.R. Froede Jr. 2003. The possible origin of fossil
wood and pollen in the Aguja and Javelina formations, Big Bend National Park, Texas. CRSQ 40:44–.52.
Humphreys, D.R., S.A. Austin, J.R. Baumgardner, and A.A. Snelling. 2004. Helium diffusion age of 6,000 years supports accelerated nuclear decay. CRSQ 41:1–.16.
Jannot, M. 2009. The world’s oldest trees. Science Illustrated, November–ecember: 78–3.
Johnson, H. 1973. The International Book of Trees. Simon and Schuster, New York, NY.
Kreiss, D.E. 1984. Can the redwoods date the Flood? Institute For Creation Research Impact Article # 134.
Lammerts, W.E. 1975. Trees indicate recent origin of Yosemite Valley. CRSQ 12:3–6.
Lammerts, W.E. 1983. Are the bristlecone pine trees really so old? CRSQ 20:108–15.
Lorey, F. 1994. Tree rings and Biblical chronology. Institute for Creation Impact Article # 252.
Loucks, I.S. 2009. Fungi from the Biblical perspective. Answers Research Journal 2:123–31.
McLamb, E., and J.C. Hall. 2010. The quiet evolution of trees. <http://ecology.com/features/quietevolutiontrees/quietevolutiontrees.html> (accessed July 12, 2010).
Muriel, F.D., and I. Leponce. 2001. Leaf dimorphism in Archaeopteris roemeriana (progymnosperm): further early fossil evidence of shoot dorsiventrality. American Journal of Botany 88:729–35.
Musselman, L.J. 2003. Trees in the Koran and the Bible. Unasylva 213: 45–6.
Oard, M.J. 2010. 320-million-year-old amber has flowering plant chemistry. Journal of Creation 24:16.
Oard, M.J., and H. Giesecke. 2007. Polystrate fossils require rapid deposition. CRSQ 43:232–40.
Palaeobotanical Research Institute. 2010. University Munster. <http://www.unimuenster. de/GeoPalaeontologie/Palaeo/Palbot/seite18.html> (accessed July 7, 2010).
Petit, R.J., and A. Hampe. 2006. Some evolutionary consequences of being a tree. Annual Review of Ecology, Evolution, and Systematics 37:187–14.
Raven, P.H., R.F. Evert, and S.E. Eichhorn. 1986. Biology of Plants, Fourth Edition. Worth Publishers, New York, NY.
Rupke, N.A. 1966. Prolegomena to a study of cataclysmal sedimentation. CRSQ 3:21–5.
Sarfati, J. 2008. By Design: Evidence for Nature’ Designer—he God of the Bible. Creation Book Publishers, Powder Springs, GA.
Scheven, J. 1996. The carboniferous floating forest—n extinct pre-Flood ecosystem. TJ 10:70–1.
Schulman, E. 2010. The ancient bristlecone pine. <http://news.nationalgeographic. com/news/2008/04/080414-oldest-tree.html> (accessed May 24, 2010).
Smith, A.R., K.M. Pryor, E. Schuettpelz, P. Korall, H. Schneider, and P.G. Wolf. 2006. A classification for extant ferns. Taxon 55:705–31.
Snelling, A. 2008. The world’s a graveyard. <http://www.answersingenesis.org/articles/am/v3/n2/world-graveyard> (accessed
July 14, 2010).

Sorensen, H.C. 1976. Bristlecone pines and trees: Ring dating –A critique. CRSQ 13:5–.
Stein, W.E., F. Mannolini, L.V. Hernick, E. Landing, and C.M. Berry. 2007. Giant cladoxylopsid trees resolve the enigma of the earth’s earliest forest stumps at Gilboa. Nature 446:904–07.
Stewart, W.N., and G.W. Rothwell.1993. Paleobotany and the Evolution of Plants, Second Edition. Cambridge University Press, New York, NY.
Tenney, M.C. (editor). 1967. The Zondervan Pictorial Bible Dictionary. Zondervan Publishing Company, Grand Rapids, MI.
Tudge, C. 2006. The Tree: A Natural History of What Trees Are, How They Live, and Why They Matter. Crown Publishers, New York, NY.
Turner, K.J. 2009. The kind-ness of God: a theological reflection of mîn, 'kind.” In
Wood, T.C., and P.A. Garner (editors), Genesis Kinds: Creationism and the Origin of Species, pp. 31–4. Wipf and Stock Publishers, Eugene, OR.
University of California Museum of Paleontology. 2010. <http://www.ucmp.berkeley.edu/seedplants/progymnosperms.html> (accessed July 13, 2010).
Vardiman, L., S.A. Austin, J.R. Baumgardner, E.F. Chaffin, D.B. DeYoung, D.R. Humphreys, and A.A. Snelling. 2003. Radioisotopes and the age of the earth. In Ivey, R. (editor), Proceedings of the Fifth International Conference on Creationism, pp. 337–48. Creation Science Fellowship, Pittsburgh, PA. Wang, Q., S.G. Hao, D.M. Wang, and D.L. Dilcher. 2002. An anatomically preserved arborescent lycopsid, sublepidodendron songziense (Sublepidodendraceae), from the late Devonian of Hubei, China. American Journal of Botany 89:1468–477.
Wieland, Carl. 2005. Dino tree planted in London. Creation 27:8–.
Williams, A. 2004. Bristlecone pine growth rings. TJ 18:60–1.
Williams, E.L. 1993. Fossil wood from Big Bend National Park, Brewster County, Texas: part II –mechanism of silicification of wood and other pertinent factors. CRSQ 30:106–11.
Williams, E.L., and G.F. Howe. 1993. Fossil wood of Big Bend National Park, Brewster County, Texas: part I - geologic setting. CRSQ 30:47–4.
Williams, E.L., G.T. Matzko, G.F. Howe, R.R. White, and W.G. Stark. 1993. Fossil wood of Big Bend National Park, Brewster County, Texas: part III –chemical tests performed on wood. CRSQ 30:169–76.
Williams, E.L., G.F. Howe, G.T. Matzko, R.R. White, and W.G. Stark. 1995. Fossil wood of Big Bend National Park, Brewster County, Texas: part IV –wood structure, nodules, paleosols, and climate. CRSQ 31:225–32.
Willis, K.J., and J.C. McElwain. 2002. The Evolution of Plants. Oxford University Press, Oxford, UK.
Wise, K.P. 2003. The pre-Flood floating forest: a study in paleontological pattern recognition. In Ivey, R. (editor), Proceedings of the Fifth International Conference on Creationism, pp. 371–81. Creation Science Fellowship, Pittsburgh, PA.
Wood, T.C. and M. J. Murray. 2003. Understanding the Pattern of Life. Broadman and Holman Publishers, Nashville, TN.
Woodmorappe, J. 2001. Much inflated carbon-14 from subfossil trees: a new mechanism. TJ 15:43–4.
Woodmorappe, J. 2003.Collapsing the long bristlecone pine tree ring chronologies. In Ivey, R. (editor), Proceedings of the Fifth International Conference on Creationism, pp. 491–03. Creation Science Fellowship, Pittsburgh, PA.


번역 - 문흥규

주소 - https://www.creationresearch.org/the-origin-of-trees

출처 - Creation Research Society Quarterly, Volume 47, Spring 2011.



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광