미디어위원회
2020-03-25

석탄층은 어떻게 형성됐는가?

(How Did Coal Seams Form?)

by Brian Thomas, PH.D.  


      달라스에서 콜로라도로 운전할 때면, 때때로 와이오밍 주의 거대한 석탄 매장지에서 채굴된 석탄을 가득 실은 열차가 지나가는 것을 볼 수 있다. 이 석탄(coal)은 달라스 포트워스 지역의 8백만 명의 가정과 산업에 에너지원이 되고 있다.[1] 그 모든 석탄들은 어떻게 거기에 묻혀있는 것일까?

사람들은 석탄을 사용하고 있지만, 석탄의 기원에 대해서 거의 알지 못하고 있다. 석탄층은 여러 미스터리들을 갖고 있다. 시간을 거슬러 올라갈 수 없기 때문에, 과거에 무슨 일이 있었는지 정확히 알 수는 없지만, 우리는 실험을 해볼 수 있고, 단서를 따라갈 수 있다.

표준 이야기는 어떤 단서를 제공할까? 토탄(peat, 이탄)은 석탄을 설명할 때, 매우 중요하다. 미국 지질조사국(United States Geological Survey)에 따르면, “토탄은 석탄의 전 단계이다.”[2] 그들은 그것을 어떻게 알았는가? 오늘날 토탄은 석탄을 형성하지 않는다. 토탄지(peat bogs)와 석탄층(coal beds)에는 둘 다 약간의 나무가 들어있지만, 다른 많은 차이점들이 있다.

예를 들어, 토탄지는 식물 뿌리로 가득 차 있지만, 석탄층에는 식물 뿌리가 보이지 않는다.[3] 그리고 오늘날 토탄지는 광대한 넓이로 확장되어있지 않지만, 석탄층은 주 규모의 광대한 넓이로 확장되어 있다. 또한 토탄지의 위쪽 표면은 약간의 상승부와 구덩이의 요철을 갖고 있지만, 석탄층들은 윗지층과 날카로운 경계면을 갖고 있다. 또한 (바다생물인) 상어는 토탄 늪지에서 수영하지(발견되지) 않지만, 석탄층에는 상어, 물고기, 공룡, 조개 화석들이 들어있다.[4] 이러한 관측 사실들은 어떤 실마리를 제공하고 있다. 

이러한 단서들은 석탄에 대한 더 격변적인 기원을 암시한다. 1980년 세인트 헬렌산(Mount St. Helens)은 맹렬하게 폭발했다. 증기폭풍은 숲을 쓸어버렸고, 나무들을 부러뜨렸고, 화산성 이류에 의해 나무들은 호수로 운반되었다. 호수에 떠다니던 백만 그루 이상의 나무 줄기(trunks, 몸통)들은 출렁이는 호수에서 서로 부딪치며, 나무껍질(bark)들은 곧 벗겨졌고, 호수 바닥에 쌓이면서 토탄(석탄의 전 단계)이 만들어졌다. 대격변이었던 창세기 대홍수 동안에는, 막대한 량의 나무들이 홍수 물 표면에 거대한 섬처럼 떠다녔을 것이고, 부딪치면서 엄청난 량의 나무껍질들이 가라앉았을 것이고, 더 많은 토탄이 생겨났을 것이다.

미국 동부의 일부 석탄층은 거의 전부 나무껍질(tree bark)로 구성되어 있다. 세인트 헬렌산의 폭발보다 수천 수만 배나 더 큰 대격변이 이들 동부지역의 석탄을 만들었던 분류(sorting, 나무껍질을 벗겨내는) 과정을 시작했을 수 있다. 대양 바닥에 가라앉은 나무껍질들은 밀려오는 두터운 퇴적물에 의해서 빠르게 매몰되었을 것이고, 용암 분출 등은 석탄화에 필요한 열을 제공했을 것이다. 노아 홍수 동안의 식물들의 격변적 파괴와 분리 과정은 오늘날 광대한 넓이로 매장되어 있는 석탄층을 설명할 수 있는 것이다.

사람들은 나무, 진흙, 불을 가지고 누구나 석탄과 비슷한 숯(charcoal)을 만들 수 있다.[5] 지질학적으로 석탄과 숯은 모두 검은 색이지만, 석탄층은 작은 층 구조를 갖고 있다. 아무도 이것을 일으킨 원인을 모른다. 물과 석탄을 사용한 실험은 서로 다른 온도가 그것들의 화학적 변화를 초래했음을 시사한다.[6] 진화론자들은 매몰된 토탄에 장구한 시간을 추정한다. 그러나 대홍수 모델에 친화적인 연구자들은 언젠가 석탄 형성 과정을 재현할 수 있을 것이다.

미국 최대 석탄지대인 와이오밍 주의 Powder River Basin 석탄층은 두께가 최대 60m에 달하며 120km까지 확장되어 있다![7] 이 석탄에너지는 무더운 여름 북부 텍사스 주의 에어컨 사용을 위한 전력을 공급해주고 있다. 이와 같은 거대한 석탄층의 형성을 위해서는 엄청난 원인이 필요하다. 전 세계의 석탄층에 들어있는 고대 식물들의 파쇄, 세계적 분포, 매몰, 구워짐 등을 일으켰던 사건은 무엇이었을까?

성경은 노아 홍수 동안에 물이 온 땅을 덮었다고 분명히 알려준다.(창 7:19). 석탄의 기원에 대한 동일과정설적 설명은 많은 미스터리를 갖고 있지만, 석탄층의 단서들이 보여주는 것처럼, 성경에 기록된 거대 스케일의 대격변이었던 전 지구적 홍수는 합리적인 설명을 제공한다.


References

  1. Annual Estimates of the Resident Population: April 1, 2010 to July 1, 2018. U.S. Census Bureau. Posted on Factfinder.census.gov, accessed August 9, 2019.
  2. Peat. U.S. Geological Survey fact sheet. Posted on usgs.gov, accessed August 13, 2019.
  3. Austin, S. A. 1986. Mt. St. Helens and Catastrophism. Acts & Facts. 15 (7).
  4. Angel, B. Shark Fossil Found in Western Kentucky Coal Mine. WKMS. Posted on wkms.org April 7, 2011, accessed August 13, 2019.
  5. Primitive Technology: CharcoalPosted on youtube.com February 19, 2016, accessed August 13, 2019.
  6. Gretener, P. E. and C. D. Curtis. 1982. Role of temperature and time on organic metamorphism. American Association of Petroleum Geologists Bulletin. 66 (8): 1124-1149.
  7. Scott, D. C. et al. 2011. Assessment of Coal Geology, Resources, and Reserves in the Northern Wyoming Powder River Basin. U.S. Geological Survey Open-File Report 2010-1294. Posted on pubs.usgs.gov.

* Dr. Thomas is Research Associate at the Institute for Creation Research and earned his Ph.D. in paleobiochemistry from the University of Liverpool.

Cite this article: Brian Thomas, Ph.D. 2020. How Did Coal Seams Form?. Acts & Facts. 49 (3).


*참조 : 석탄 : 전 지구적 대홍수의 기념물

http://creation.kr/Sediments/?idx=1288657&bmode=view

부러 잊으려는 벌레 : 석탄 속의 작은 바다벌레

http://creation.kr/Catastrophic/?idx=1288257&bmode=view

석탄층에서 발견된 상어 화석 : 석탄의 늪지 형성 이론을 거부하는 또 하나의 증거

http://creation.kr/EvidenceofFlood/?idx=1288276&bmode=view

세인트 헬렌산과 격변설

http://creation.kr/Catastrophic/?idx=1288229&bmode=view

석탄 : 젊은 지구에 관한 증거 

http://creation.kr/Catastrophic/?idx=1288244&bmode=view

석탄층에서 통째로 발견된 화석 숲 : 고생대 석탄기 숲에서 2억 년 후의 백악기 나무가?

http://creation.kr/Controversy/?idx=1294681&bmode=view

고대 석탄에서 발견되는 방사성탄소

http://creation.kr/IsotopeClock/?idx=1289176&bmode=view

젊은 지구에 비해 너무 많은 석탄?

http://creation.kr/Catastrophic/?idx=1288243&bmode=view

셰일오일과 셰일가스가 존재하는 이유는? : 광대한 셰일 층들은 전 지구적 홍수를 가리키고 있다.

http://creation.kr/EvidenceofFlood/?idx=1288281&bmode=view

석유, 셰일오일, 천연가스의 기원과 최근의 전 지구적 홍수.

http://creation.kr/EvidenceofFlood/?idx=1288282&bmode=view

한 시간 만에 만들어진 원유 : 석유, 석탄, 천연가스, 오팔, 다이아몬드, 금, 화석화, 종유석.. 등은 수백만 년이 아니라, 단기간 내에 형성된다.

http://creation.kr/Sediments/?idx=1288661&bmode=view


출처 : ICR, 2020. 2. 28.

주소 : https://www.icr.org/article/how-did-coal-seams-form/

번역 : 미디어위원회

미디어위원회
2020-03-19

대륙에 발생되어 있는 대규모의 거대한 침식은 

대홍수가 휩쓸고 간 증거이다. 

(Massive erosion of continents demonstrates Flood runoff)

by Michael J. Oard, Ph.D.


       수많은 식물과 동물들이 매몰되어 있는, 수 킬로미터 두께의 거대한 퇴적층들이 대홍수(보통 노아 홍수라 부름) 초기에 쌓였다. 퇴적물들은 고화(固化)되어 퇴적암이 되었으며, 생명체들은 화석으로 변했다. 그리고 산과 대륙은 올라가고, 계곡과 바다는 내려갔다(시편 104:6-9). 그 결과로 대홍수의 물이 대륙을 휩쓸고 빠져나갔는데, 때로는 매우 빠른 속도로 물러갔다. 이 기간을 ‘대홍수 후퇴기(퇴조조기)’(Recessive Stage of the Flood)라 부르며[1], 대홍수 기간의 거의 중간인 대홍수 시작 150일째 되는 날에 시작했을 것이다.[2] 그 결과 여러 대륙의 광대한 지역에서 대규모의 침식이 일어났다. 침식의 결과는 전 세계에 걸쳐 명확하게 관측될 수 있다.  

그림 1. 한때 퇴적암 고원 아래에 묻혀 있었던, 화성암의 침식잔류물인 미국 와이오밍 주 북동부의 데블스타워(Devils Tower, 악마의 탑).  
 

대륙 침식의 측정

특정 지역의 침식 정도를 추정할 수 있는 여러 가지 방법이 있지만, 가장 직접적이며 전제(前提; assumption)가 적은 네 가지 방법이 있다. 첫 번째 방법은 미국 와이오밍 주 동북부의 데블스타워와 같은 침식잔류물(erosional remnant)의 높이와 관련이 있다(그림 1). 이런 침식잔류물들은 주변 암석들이 침식되고 난 후, 남아 있는 원암석(原巖石; original rock)의 일부이다. 침식잔류물의 바닥과 꼭대기 사이의 높이 차이가 침식 정도에 대한 최소 예측치가 된다. 이 방법에 비추어보아 데블스타워 지역에서는 적어도 350m 이상의 침식이 발생했다는 것을 알 수 있다. 

침식의 최소치를 추정할 수 있는 곳이 다른 곳에도 많다. 데블스타워는 진정 경이로운 자연 경관이다.  

두 번째 방법은 거대한 융기된 돔의 중심부에서 침식의 양을 결정하는 것이다(그림 2). 둥근 돔(dome)을 이루고 있었던 경사퇴적층(tilted sedimentary layers)이 어디까지 연장되어 있었는지를 외삽법(extrapolating)을 이용하여 추정할 수 있다. (점선 이하가 침식된 것으로 추정).     

그림 2. 배사구조에서의 빠른 대홍수 침식 모형도

세 번째 방법은 지표나 지표 근처의 석탄의 등급(rank)을 조사하는 것이다. 석탄의 형성은 주로 온도와 관련이 있는데, 온도가 높을수록 등급이 높아진다. 즉, 낮은 온도에서는 갈탄(lignite)이 만들어지며, 온도가 상승함에 따라 역청탄(bituminous coal), 무연탄(anthracite coal)이 만들어진다. 온도는 식물의 매몰 깊이에 비례하기 때문에, 등급이 높은 석탄은 매몰 깊이가 더 깊었음을 의미하므로, 등급이 높은 석탄이 지표면에 있다는 것은 그 만큼 침식이 많이 되었다는 것을 의미한다. 온도 외의 요인들로 인해 계산이 복잡하기는 하지만, 석탄의 등급으로부터 경험적 추론이 가능하다. 지표면이나 지표면 가까이에 역청탄이나 무연탄이 있다는 것은 과거에 3,000~6,000m 지하였다는 것을 의미한다.  

지역적 침식의 규모를 결정하는 네 번째 방법은—대륙붕, 대륙사면(大陸斜面), 대륙 고지대(高地帶)를 포함하는—대륙주변부(continental margin)의 퇴적암의 규모를 살펴보는 것이다. 대륙주변부 퇴적암의 배수지역(drainage area)이 평가될 수 있다면, 대략적인 침식의 총량을 알 수 있다.      


대륙에 발생되어 있는 거대한 침식

지표면에 석탄이 없다면, 미국의 ‘대평원(Great Plains)’처럼 전 세계에는 침식을 평가할 수 없는 곳이 많은데, 그 이유는 평평한 지형의 범위가 너무도 넓기 때문이다. 산악지역은 융기하는 동안 표토(表土) 퇴적암이 너무도 막대하게 침식되어, 얼마나 침식되었는가를 추정하기가 거의 불가능하다. 그러나 침식의 최소치(minimum erosion)를 직접 추정할 수 있는 많은 지역들이 있으며, 그것은 정말로 광대하다.  

337,000㎢의 면적을 차지하는 미국 남서부 ‘콜로라도 고원(Colorado Plateau)’의 두터운 퇴적암들은 돔(dome)과 분지(basins)로 단지 약간만 변형(습곡)되었다. 돔 부분은 심하게 침식되었다. 위에 언급한 두 번째 방법을 사용하여, 침식당한 돔 가장자리를 따라 퇴적암의 경사(傾斜)를 측정할 수 있고, 돔 위의 침식 정도를 계산할 수 있다. 이 방법으로 ‘콜로라도 고원’의 평균 침식량은 전체 지역에 걸쳐 2,500~5,000m라는 것을 알 수 있다![4]    

미국 동부 애팔래치아 산맥은 둥그스름한데, 그것은 막대한 침식을 의미한다. 침식의 양은 지표의 석탄 등급과 해안의 퇴적암의 양으로부터 추정해볼 수 있다.[5] 두 방법으로 구한 침식은 모두 6,000m 정도이다.     

과학 문헌들로부터 침식 추정치들을 훨씬 더 많이 알 수 있다. 북미의 다른 지역에서도 유사하게 침식이 거대하게 일어났음을 알 수 있다. 미국 애리조나 주 남부에서는 1,600m 이상이 침식되었다.[6] 캐나다 남부의 로키산맥과 산기슭의 작은 언덕들, 서부 평원으로부터 수천 m의 지층이 사라졌다.[7] 

그림 3. 영국 남동부 윌든 돔(Wealden Dome)의 융기와 침식. 돔 중심부가 1,500m 정도 침식되었다.  

호주의 지질학적 특징을 살펴보면, 호주 대륙은 심하게 침식되었음을 알 수 있다.[8] 예를 들면 호주 서부의 플린더스 산맥(Flinders Ranges)은 6,000m 정도가 침식되었다.[9] 유럽에서 영국의 웨일즈 산악지역은 3,000m 정도가 침식되었다.[10] 영국 남서부에서는 1,000~1,600m 정도가 침식되었다(그림 3)[11].     

파트리지(Partridge)는 남부 아프리카는 1,000~3,000m 이상이 침식되었다고 믿고 있다.[12] 남극대륙의 트랜스앤타크틱 산맥(Transantartic Mountains)의 맥머도(McMurdo) 지역 해변 260km를 따라 발생되어있는 4,000~7,000m 두께의 침식은 참으로 경이롭다.[13]   


계곡과 분지의 침식

데블스타워와 같은 침식 잔류지형은—주변의 퇴적암을 모두 침식하면서도, 다양한 이유로 데블스타워를 남겨 놓은—창세기 홍수로 설명될 수 있다.   

대홍수 후퇴기(the Recessive Stage of the Flood) 후반에, 더욱 많은 산맥과 고원들이 대홍수의 물 위로 드러나면서 더욱 많은 수로(水路)들이 생겼다. 이 때 침식에 의해 계곡과 깊은 협곡들이 형성되었다. 위의 방법과 똑 같은 방법을 사용하여, 두터운 퇴적암을 가지고 있는 계곡과 분지에서 침식의 최소치를 추정할 수 있다. 예를 들면 미국 로키산맥의 계곡과 분지는 수 천 미터의 퇴적암을 가지고 있지만, 표토는 침식되어 없어졌다. 침식성 잔재물과 침식된 돔에 근거하여, 위에 두 번째 방법으로, 지질학자들은 침식의 최소치를 평가했다.[14] 분지 침식의 평균 추정치는 와이오밍에서 850m, 콜로라도에서 1,520m, 뉴멕시코에서 1,000m에 이르렀다.

예를 들면, 미국 와이오밍 주 중북부의 빅호른 분지(Bighorn Basin)는 넓이가 21,000㎢이며, 퇴적암의 두께는 4,500~7,500m이다. 빅호른 분지 중앙에 있는 타트만산(Tatman Mountain, 그림 4)은 해발 1,899m이며, 분지 침식의 침식잔재물이다. 타트만산은 평평하며—물의 작용에 의해 둥근 돌들이 표면에 존재하는—평탄면(planation surface)의 일례이다.[15]

타트만산의 높이와 빅호른 분지의 동쪽 기울기에 근거하여 평가해보면, 침식 두께는 약 350m(서쪽) ~ 750m(동쪽)에 이른다. 침식된 퇴적암의 부피는 약 10,000㎦ 이다. 수백만 년에 걸쳐 서서히 침식이 일어났었다면 있어야 할 퇴적물이 동쪽 경사면에서 발견되지 않는다. 침식된 부스러기들이 대륙을 휩쓸어 깎아버렸으며, 현재는 멕시코 만 변두리에 두터운 퇴적암을 형성하고 있다.    

그림 4. 타트만산의 자갈로 덮여진 평탄면(gravel-capped planation surface, 멀리 보이는 배경 언덕). 빅호른 분지의 평균 430m의 침식을 가리키는, 아래쪽 자갈로 덮여진 평탄면에서 남쪽을 바라본 전경.   

그림 5. 미졸라 호수 홍수(Lake Missoula flood)에 의한 그랜드 쿨리(Grand Coulee)의 급격한 침식 시에 형성된 275m 높이의 수직벽을 가진 침식 잔류물인 스팀보트 록(Steamboat Rock).


침식은 빠르게 일어났다.

대륙의 침식은 빠르게 일어났으며, 세속 과학자들이 믿고 있는 것처럼 수백만 년에 걸쳐 서서히 일어나지 않았다. 지구상에 존재하는 수천 개의 침식잔류물들도 마찬가지다. 예를 들면, 데블스타워는 주변의 퇴적암이 모두 침식되는 수백만 년 동안 그대로 남아 있을 수 없다.[3] 가파른 경사면을 따라 많은 암석들이 미끄러져 내리고 떨어지기 때문에, 수직면의 침식은 수평면의 침식보다 훨씬 더 빠르다.[16] 더욱이 수많은 수직 균열(crack)이 있는 데블스타워는 결빙-해동 풍화작용에 취약하다. 폭풍우는 균열에 물을 채우고, 겨울에는 물이 얼고, 얼음은 팽창하여 균열의 크기는 커진다. 매년 겨울 돌이나 바위 덩어리들이 떨어져 내려 바닥에 쌓인다. 그리고 이러한 현상은 오늘날에도 관측되고 있다 :

1954년 11월에 데블스타워 가까이에 살았는데, 밤에 동결작용이 일어나는 동안 돌이나 바위 덩어리들이 테일러스(talus, 절벽 기슭이나 산 사면에 쌓여있는 절벽에서 떨어져 나온 모난 암석의 집합체)에 떨어져 부딪히는 소리를 들을 수 있었다. 이러한 일은 대개 눈이 온 후에 일어난다. 해가 비치는 따뜻한 날 눈이 녹아서 물기가 데블스타워의 절리(節理; 암석의 갈라진 틈)[수직 틈새]에 들어간다. 어두워 진후, 물이 얼어서 팽창하여 지속적으로 데블스타워로부터 바위덩어리가 떨어져 나와 테일러스에 돌들은 점점 더 많아진다.[17]        

       
 그림 6. 대홍수 후퇴기 동안의 거대한 대륙 침식 모형도(drawn by Mrs. Melanie Richard).

데블스타워는 수만 년 내에, 넉넉잡아도 10만 년 내에 확실하게 파괴됐어야만 한다. 그러나 데블스타워는 수백만 년 동안 존재해왔다고 주장되고 있다. 데블스타워와 같은 침식잔재물들은—주변의 퇴적암을 침식하여 없애버리고, 데블스타워 만을 남겨 놓은—창세기 홍수로 설명될 수 있다. 데블스타워를 이루고 있는 화산암(향암, phonolite)은 (거대한 침식 시에) 주변의 퇴적암보다 더 단단했을 것이다.    


창세기 홍수의 강력한 증거

전 세계에 걸친 빠르고 광대한 침식(침식잔류물은 전 세계적이다)은 전 지구적인 창세기 홍수 후퇴기(Recessive Stage)에 발생했을 가능성이 높은 현상이다. 빙하기가 절정일 때, 미국 서북부에 있던 미졸라 호수의 홍수가 발생했을 때처럼, 거대한 홍수는 침식잔재물을 남긴다는 사실은 잘 알려져 있다.[18] 미국 워싱톤주 중부에 상부 그랜드 쿨리에 있는 스팀보트 록(Steamboat Rock)(그림 5)은 침식잔재물로서 275m 높이의 현무암 용암으로 된 고산(孤山, butte)이다. (※ 역자 주: ① 그랜드 쿨리(Grand Coulee)는 Dry Falls를 경계로 상부, 하부 그랜드 쿨리로 나뉘어진다. ② 고산(孤山; butte): [미 서부나 캐나다의] (평원의) 고립된 산.)

이러한 모든 침식 잔류 지형들은 대홍수 절정기에는 더 많은 퇴적층과 퇴적물이 대륙에 쌓여있었다는 것을 의미한다(그림 6). 대륙의 지표면이나 지표면 가까이에 드러난 암석들은 대홍수가 물러가던 시기인 대홍수 후퇴기(퇴조기)의 급속한 침식 후에 남아있게된 것들이다.   

한때 지구상에 일어났던 노아홍수 대격변의 어마어마함을 이해하게 된다면, 지구상의 여러 지형들이 새롭게 의미심장하게 다가오는 것이다 :

”믿음으로 노아는 아직 보이지 않는 일에 경고하심을 받아 경외함으로 방주를 준비하여 그 집을 구원하였으니”(히11:7).    
  


Related Articles
Eroding ages
It’s plain to see
The mountains rose
Noah’s long-distance travelers
The remarkable African Planation Surface
Visual evidence for Noah’s Flood
It’s time for evolutionist geologists to face the evidence


Further Reading
Geology Questions and Answers


References and notes
1.Walker, T., A Biblical geological model; in; Walsh, R.E. (Ed.), Proceedings of the Third International Conference on Creationism, technical symposium sessions, Creation Science Fellowship, Pittsburgh, Pennsylvania, pp. 581–592, 1994.
2.Oard, M.J., Continental erosion places the Flood/post-Flood boundary in the late Cenozoic, J. Creation 27(2):62–70, 2013.
3.Oard, M.J., Devils Tower can be explained by floodwater runoffJ. Creation 23(2):124–127, 2009; creation.com/landscape-erosion. See also Walker, T., Devils Tower and Bible glasses, Creation 24(3):20–23, 2002; creation.com/devils_tower.
4.Schmidt, K.-H., The significance of scarp retreat for Cenozoic landform evolution on the Colorado Plateau, U.S.A., Earth Surface Processes and Landforms 14(2):93–105, 1989.
5.Oard, M.J., Origin of Appalachian Geomorphology Part I: erosion by retreating Floodwater, Creation Research Society Quarterly 48(1):33–48, 2011.
6.Oard, M.J. and Klevberg, P., Deposits remaining from the Genesis Flood: Rim Gravels in Arizona, Creation Research Society Quarterly 42(1):1–17, 2005.
7.Bustin, R.M., Organic maturity in the western Canada sedimentary basin, International Journal of Coal Geology 19:319–358, 1991; Osborn, G., Stockmal, G. and Haspel, R., Emergence of the Canadian Rockies and adjacent plains: a comparison of physiography between end-of-Laramide time and the present day, Geomorphology 75:450–477, 2006. 8.Galloway, R.W., Introduction; in: Davies, J.L. and Williams, M.A.J. (Eds.), Landform Evolution in Australasia, Australian National University Press, Canberra, Australia, pp. 1–4, 1978.
9.Twidale, C.R. and Campbell, E.M., Australian Landforms: Understanding a Low, Flat, Arid and Old Landscape, Rosenberg Publishing Pty Ltd, Dural Delivery Centre, New South Wales, Australia, p. 195, 2005.
10.Small, R.J., The Study of Landforms: A Textbook of Geomorphology, second edition, Cambridge University Press, London, U.K., p. 266, 1978.
11.Jones, D.K.C., On the uplift and denudation of the Weald; in: Smith, B.J., Whalley, W.B. and Warke, P.A. (Eds.), Uplift, Erosion and Stability: Perspectives on Long-Term Landscape Development, Geological Society of London Special Publication No. 162, The Geological Society, London, U.K., p. 32, 1999.
12.Partridge, T.C., Of diamonds, dinosaurs and diastrophism: 150 million years of landscape evolution in Southern Africa, African Journal of Geology 101(3):167–184, 1998.
13.Sugden, D. and Denton, G., Cenozoic landscape evolution of the Convoy Range of Mackay Glacier area, Transantarctic Mountains: onshore to offshore synthesis, GSA Bulletin 116(7/8):840–857, 2004.
14.McMillan, M.E., Heller, P.L. and Wing, S.L., History and causes of post-Laramide relief in the Rocky Mountain orogenic plateau, GSA Bulletin 118(3/4):393–405, 2006.
15.Oard, M.,It’s plain to see: flat land surfaces are strong evidence for the Genesis Flood, Creation 28(2):34–37, 2006; creation.com/plain.
16.Twidale, C.R., Geomorphology, Thomas Nelson, Melbourne, Australia, pp. 164–165, 1968; Pazzaglia, F.J., Landscape evolution models; in: Gillespie, A.R., Porter, S.C. and Atwater, B.F. (Eds.), The Quaternary Period in the United States, Elsevier, New York, NY, p. 249, 2004.
17.Robinson, C.S. and Davis, R.E., Geology of Devils Tower, Wyoming, Devils Tower Natural History Association, p. 36, 1995.
18.Oard, M.J., The Missoula Flood Controversy and the Genesis Flood, Creation Research Society Monograph Books, Chino Valley, AZ, 2004.

 

번역 - 홍기범

링크 - http://creation.com/continental-erosion 

출처 - Creation 35(3):44–47, July 2013.

미디어위원회
2020-03-02

피오르드는 어떻게 형성됐는가?

(How did the Fjords form?)

by Tas Walker, Ph.D.


   노르웨이의 한 독자는 피오르드(fjords, 협만)의 기원에 대해 질문해왔다 : 

“빙하가 피오르드를 형성했나요? 아니면 이미 파여져 있었고, 얼음이 그곳에 채워졌나요? 대륙판들은 서로 충돌했나요? 최근 제 아들이 이것에 대해 질문한 이후로, 우리 가족은 이에 대해 열렬히 토론하고 있습니다.”


CMI의 지질학자인 타스 워커(Tas Walker) 박사가 다음과 같이 대답했다 :


피오르드의 기원에 대한 여러 주장들이 있다. 1992년 "노르웨이 서부의 송네 피오르드(Sognefjord) 배수 분지의 신생대 제4기 침식"이라는 제목의 논문은, 피오르드에 대한 유용한 개요를 제공하고 있다.[1] 이 논문은 노르웨이 베르겐 대학의 지질학 교수인 아틀레 네스제(Atle Nesje) 박사 등에 의해서 Geomorphology 지에 게재된 것으로, 이 정보는 이후에 Fjords.com 웹 사이트에도 게시되었다. 송네 피오르드(그림 1)는 노르웨이에서 가장 크고, 가장 유명한 피오르드이며, 세계에서 가장 긴 피오르드이다. 그 논문에서 사용되고 있는 수천 수백만 년의 진화론적 연대는 성경적 역사 내에서 다음과 같은 재해석 될 수 있다 :

표 : 성경적 시간 틀로 재해석된 진화론적 지질시대



   

물에 의해서, 아니면 빙하에 의해서?

1992년 논문에 의하면, 피오르드(fjords)는 현재 또는 과거의 빙하작용이 현재 해수면 아래로 확장됐던 계곡에서 발견되고 있으며, 빙하가 계곡을 전형적인 U자형(U-shape)으로 파냈다고 설명한다. 빙하가 후퇴했을 때, 계곡은 바다로 채워져 있었는데, 계곡은 좁고, 가파른 측면의 입구를 가지며, 때로는 1,300m보다 더 깊다. 빙하에 의해서 계곡 아래로 밀려 내려간 종퇴석(terminal moraine)은 피오르드 입구에서 수중에 남겨졌고, 그곳에서 피오르드의 뒤쪽보다 얕은 물가를 만들었다. 송네 피오르드의 경우에 해수면 1,500m 아래의 기반암 위에, 약 200m 정도의 퇴적물이 쌓여있다. 송네 피오르드의 폭은 6km에 이른다.

그림 1. 노르웨이 방스네스(Vangsnes) 근처의 송네 피오르드(Sognefjord). 바다에서 내륙으로 약 100km 길이의 이 피오르드를 둘러싸고 있는 평탄한 지표면은, 이 고원이 노아 홍수가 이 지역 전체를 덮었을 때, 물러가던 홍수 물에 의해서 파여졌음을 나타낸다. (Per Olav Bøyum Wikimedia CreativeCommons Attribution 2.0 GenericVangsnes).


피요르드 형성의 실제적 과정에 대하여 논문은 이렇게 시작된다 :

"... 이 지형과 관련된 기원과 과정은 거의 백 년 동안 논란이 되어왔다... 이 논란은 주로 노르웨이와 캐나다에 있는 고전적 피오르드와 피오르드 호수(fjord lakes)에 초점이 맞추어져 있었다. 대부분의 저자들은 피오르드에 빙하 침식의 영향은 분명하지만, 빙하 활동은 지각변동(tectonism)과 하식(fluvial erosion)과 같은 다른 과정에 비해 명백하지 않다는데 동의하고 있다.“

북반구에서 매우 뛰어난 피오르드 지형은 이곳이지만, 가장 유명한 피오르드는 1986년 이후 유네스코 세계유산으로 지정된 뉴질랜드 남섬의 피오르드랜드 국립공원(Fiordland National Park)일 것이다. 이 곳은 유명한 밀포드 사운드(Milford Sound)를 포함하여 215km의 해안선에 걸쳐 14개의 피오르드가 있다. 러디어드 키플링(Rudyard Kipling)은 이곳을 "세계의 8대 불가사의"라고 불렀다.

그 논문에서 논의된 두 가지 과정은 물에 의한 침식(강에 의한 침식, '하식' 과정)과, 빙하에 의한 침식이다. 각 과정이 얼마나 많이 관여했는 지에 대한 논의와 함께, 이 두 과정이 피오르드를 형성하는 데 관여했다고 일반적으로 받아들여지고 있다. 

그림 2. 지도에서 볼 수 있듯이, 노르웨이 해안을 따라있는 피오르드는 검은 선에서부터 주로 두 방향으로 나있다. 이 검은 선은 지각의 구조적 운동으로 인한 기반암의 단층선(lines of faulting)이다. (Map data ©2015 GoogleNorway-google-marked)


언급된 다른 과정은 구조적 지각변동(tectonism)이다. 이것은 기본적으로 지구의 지각판이 위, 아래, 옆으로 이동한 것이다. 이 지각변동은 대륙 구조를 형성하는 거대한 암석 블록을 밀어낸 것으로, 지구 지각은 기반암과의 연결이 끊어지고, 단층들이 생겨나고, 분쇄된다. 해당 지역의 지도(그림 2)에서 단층선을 보면, 수로의 방향은 두 방향, 즉 북동에서 남서로, 북서에서 남동으로 나있음을 알 수 있다. 이것은 기반암이 움직이고 갈라진, 지판들의 구조 운동을 경험한 지역의 전형적인 모습이다.



발트 순상지의 구조

이 지역의 지질학은 이 기본적인 지판 구조에 대한 통찰력을 제공한다. 피오르드가 나있는 스칸디나비아 반도는 발트 순상지(Baltic Shield)로 알려진 지구 지각(earth’s crust)의 큰 부분의 일부로, '오래된' 결정질 변성암(crystalline metamorphic rocks)으로 구성되어 있다. "결정질 및 변성"은 대규모 지각 운동의 결과로, 압력 및 온도에 의해서 변성되었음을 나타낸다. 스칸디나비아 반도는 ‘외래지층’(allochthon, 지각 운동으로 다른 장소에서 이동해 온 암석 블록)이라 불리는 수백 km 길이의 큰 바위 블록으로 되어있다고 생각하고 있다. 이 개념은 거대한 블록들이 원래 위치에서 옮겨져, 함께 밀려졌고, 반도가 형성됐다는 생각이다.

발트 순상지의 경우, 외래암체가 발트 순상지에 대해 북서쪽으로부터 옆으로 밀려졌고, 그 크기가 확장되었다고 가정되고 있다. 발트 순상지의 북동쪽에서 남서쪽 구조는 지질도에서 볼 수 있다.(그림 3). 발트 순상지를 형성했던 암체의 이동은 노아 홍수의 매우 초기인 고에너지의 분출 단계 동안 발생했을 가능성이 높다. 이것은 노아 홍수 후반기에 일어났던, 구조적 단층과 균열을 만들었던 지각의 움직임과는 다르다. 노아 홍수 후반기에 대륙은 융기되었고, 대양저는 침몰했으며, 이때 형성됐던 단층과 균열은 피오르드의 발달을 이끌었다. 



피오르드의 많은 부분은 빙하기 이전에 형성되었다 

송네 피오르드의 형성에 관한 논문은 다음과 같이 말한다.

"송네 피오르드는 빙하 이전의 (원래의/오래된) 하천계(river system)을 뒤따른 것으로 추정된다.[4] 많은 곳에서 (빙하기 이전의) 오래된 지표면은 다소 변경되지 않고 보존되어 있으며, 오래된 지표면과 현재의 지형은 일반적으로 함께 발생해있다.... 송네 피오르드를 따라 동쪽으로 일관되고 점진적으로 상승한 정상부 고도는 [빙하기 이전의] 오래된 지표면의 잔재로 간주될 수 있다.

다른 말로 해서, 거대 스케일로 볼 때 많은 장소에서 지형의 모습은, 빙하기의 빙하작용에 의해서 크게 영향을 받지 않았다는 것이다. 이것은 지형의 기본적인 형태는 물러가던 노아 홍수의 물에 의해서 형성되었음을 의미한다. 물러가던 물은 두 단계로 침식을 일으켰는데, 첫째, 홍수 물은 대륙을 가로지르며 넓은 판상으로 침식을 일으켰고, 점차적으로 동쪽에서 상승하던 커다란 고원들에서 침식을 일으켰다. 다른 대륙에서의 관측을 바탕으로 이 단계 동안에, 수 km의 지층암석이 현재 지표면 위에서 제거되었을 것이다. 둘째, 후퇴하던 물 흐름은 줄어들었고, 그러나 여전히 수로를 이루며 흐르면서, 논문이 언급한 것처럼, 빙하기 이전의 하천계를 침식했다. 그 하천계는 존재하던 절리, 단층, 균열을 포함한 기존 지질구조에 영향을 받거나 조절되었다. 언급했듯이, 이 구조는 홍수 동안의 과정들에 의해서 형성되었을 것이다.


그림 3. 노르웨이, 스웨덴, 핀란드의 단순화된 지질도. 발트 순상지의 기본적으로 북동쪽에서 남서쪽 구조는 지도에서 볼 수 있다. 현재 생각은 발트 순상지가 북서쪽으로부터 밀려온 외래지층에 의해서 모여졌다고 추정되고 있다. https://minerva.union.edu/hollochk/c_petrology/nor_eclogites.html에서)


이것은 빙하기 이전에 이미 존재하던 계곡에, 빙하의 주요 영향이 미쳤다는 것을 의미한다. 특히 산이 높은 곳에서 피오르드는 깊어졌다. 이러한 과도한 깊어짐은 피오르드뿐만 아니라, 빙모(ice cap)가 있는 높은 산 측면의 일부 계곡에서 관측된다. 이 과도한 깊어짐은 얼음의 두께로 인한, 고압력의 기저부 용융수에 의해서 발생될 수 있다.

실제로 빙하에 의해서 침식된 물질의 양이 계산되었는데, 1992년의 논문은 다음과 같이 말했다. "그러나 빙하 이전의 계곡 바닥은 현재 피오르드를 따라 정확하게 재구성하기가 어렵다... 이것은 빙하에 의한 침식량의 계산에 상당한 불확실성을 초래하고 있다.“ 이러한 불확실성에도 불구하고, 저자들은 빙하기 동안 빙하에 의해서 송네 피오르드의 협곡은 평균 약 610m의 암석이 침식되었다고 추정하였다. 그러나 빙하는 피오르드를 파내지 않았으며, 하천계의 침식 작용에 의해서, 즉 후퇴하던 노아 홍수의 물에 의해서 이미 파여졌던 커다란 계곡이 빙하에 의해서 더 깊어졌을 뿐이다.   



결론

요약하면, 이 지역의 주요 지질구조는 노아 홍수 초기에 형성되었는데, 거대한 외래암체(즉, 거대한 암석 덩어리)가 발트 순상지의 가장자리에 옆으로 가해지면서 확장되었다. 지형의 주요 모양, 특히 커다란 평탄한 고원은 대륙의 융기 동안 후퇴하던 홍수 물에 의해 잘려졌다. 또한 기본 하천계는 후퇴하던 홍수 물에 의해 파여졌고, 후에 수로화 된 흐름을 갖게 되었다. 절리, 단층, 균열을 포함한 결정질 변성암의 기존의 지질구조는 이 하천계의 흐름을 유도하여, 초기에 파내었던 계곡들의 배치에 영향을 미쳤다. 빙하기 동안, 빙하 얼음들이 그 계곡을 가득 채웠고, 깊어지고, 확장되었고, 빙하 암설(glacial debris)들을 피오르드의 입구로 밀어내었던 것이다.




*참조 : 노아 홍수의 물은 대륙에서 어떻게 물러갔는가? 

http://creation.kr/EvidenceofFlood/?page=1#1288472

수극과 풍극은 노아 홍수 후퇴기 동안에 파여졌다.

http://creation.kr/EvidenceofFlood/?page=3#2094916

그랜드 캐니언보다 큰 해저협곡들은 물러가던 노아 홍수의 물에 의해 파여졌다.

http://creation.kr/EvidenceofFlood#2954870

그랜드 캐년이 노아의 홍수에 의해서 형성되었다고 보는 이유

http://creation.kr/Sediments/?idx=1288678&bmode=view

셰일오일과 셰일가스가 존재하는 이유는? : 광대한 셰일 층들은 전 지구적 홍수를 가리키고 있다.

http://creation.kr/EvidenceofFlood/?idx=1288281&bmode=view

지형학은 노아 홍수의 풍부한 증거들을 제공한다. : 산, 평탄면, 도상구릉, 표석, 수극, 해저협곡의 기원

http://creation.kr/EvidenceofFlood/?page=3#2094916

퇴적층에 기초한 해수면 곡선 : 3개 대륙에서 관측되는 동일한 퇴적 패턴은 한 번의 전 지구적 홍수를 증거한다. 

http://creation.kr/EvidenceofFlood/?page=3#2094916

노아 홍수 후퇴기에 형성된 아시아 중남부의 판상 자갈층 : 홍수/홍수 후 경계는 신생대 후기일 가능성이 높다. 

http://creation.kr/EvidenceofFlood/?page=3#2094916

전 지구적 대홍수, 격변적 판구조론, 그리고 지구의 역사 

http://creation.kr/EvidenceofFlood/?idx=1288483&bmode=view

황토(뢰스)의 기원과 노아홍수, 그리고 한 번의 빙하기 

http://creation.kr/EvidenceofFlood/?idx=1288471&bmode=view


Related Articles

Further Reading


References and notes

1. Nesje, A., Dahl, S.O., Valen, VG., and Øvstedal, J., Quaternary erosion in the Sognefjord drainage basin, western Norway, Geomorphology 5:511–520, 1992.

2. The long-age dates listed are from the international Chronostratigraphic Chart v 2019/05, International Commission on Stratigraphy, stratigraphy.org. The long-age numbers change from time to time.

3. Oard, M.J., An Ice Age Caused by the Genesis Flood, Institute for Creation Research, El Cajon, CA., 1990; Available on creation.com store. 

4. Paleic refers to the original land surface as it existed at the opening of the Ice Age and before glaciers formed the present topography. 


출처 : CMI, 2020. 2. 15. (GMT+10)

주소 : https://creation.com/fjords

번역 : 미디어위원회

미디어위원회
2020-02-27

그랜드 캐니언의 형성 기원에 대한 “물러가는 홍수 시나리오” 1 

(A receding Flood scenario for the origin of the Grand Canyon)

by Peter Scheele


   많은 창조 지질학자들은 그랜드 캐니언이 자연적 댐의 붕괴 사건으로 인해 격변적으로 형성되었다고 제안해왔다. 이것은 노아 홍수 후 고원에 남아있던 그랜드 캐니언 동쪽에 막대한 량의 물을 가두고 있었던 고대 호수로부터, 엄청난 량의 물이 격변적으로 배출되었다는 것이다. 이 사건은 동쪽으로부터 시작하여 서쪽으로 이동하면서 그랜드 캐니언을 파내었을 수 있다. 그러나 그랜드 캐니언의 많은 모습들은 그러한 댐붕괴 사건에 의해서 적절히 설명될 수 없는 것처럼 보인다. 더 나은 설명은 그랜드 캐니언은 미 대륙으로부터 물러가던 노아 홍수의 물에 의해서 형성되었다는 것이다. 이 물러가던 대홍수 물은 동쪽에서 서쪽으로 흐름으로 인해서, 그랜드 캐니언은 주로 반대방향으로, 즉 서쪽에서 동쪽으로 파여졌다는 것이다. 이 시나리오는 그랜드 캐니언의 많은 특성들과 매우 특이적인 지형들을 설명할 수 있다. 가령, 능선 꼭대기를 관통하고 있는 캐니언의 위치, 또는 브랜치 모양의 지형들, 여러 대규모 또는 소규모의 측면 캐니언들, 구불거리는(사행) 협곡의 모습들, 종말 급경사면에 나있는 다중의 배출 지점의 존재... 같은 것들이다.



댐 붕괴 이론

그랜드 캐니언(Grand Canyon, GC)의 기원은 7백만 년 이상의 느린 과정으로 파여졌다는 동일과정설적 견해와는 반대로, 창조론자들은 그랜드 캐니언은 거대한 자연적 댐의 붕괴에 의해서 단 한 번의 격변적 사건으로 파여졌다고 주장해왔다. 이 ”댐 붕괴 이론(breached-dam theory, BDT)”은 그 명칭이 가리키고 있는 것처럼, 과거 카이밥 고원의 동쪽에 놓여있었던 호피 호수(Hopi Lake)와 그랜드 리버 호수(Green River Lake or Grand Lake)라 불려지는 두 거대한 호수에 가둬져있던 물들이 격변적으로 배출되면서, 더 높게 놓여있던 고원을 잘라내면서 파내었고, 그랜드 캐니언이 형성되었다는 이론이다.

왈트 브라운(Walt Brown)은 1980년에 출간된 그의 책 ”태초에(In The Beginning)”에서 댐붕괴 이론을 기술했다. 그 책은 지금은 8판이 출간되었다.[1] 1980년대 후반에 에드몬드 홀로이드(Edmond Holroyd)는 두 고대 호수의 경계를 결정했다.[2, 3] 스티브 오스틴(Steve Austin)은 1994년 출간한 그의 책 ”그랜드 캐니언: 대격변의 기념비(Grand Canyon, Monument to Catastrophe)”에서 댐 붕괴 이론을 요약했다.[4] 

그림 1은 그랜드 캐니언 주변 지역에 대한 디지털 고도 모델(Digital Elevation Model)이다. 이것은 상승되어 있었던 호수물의 경계라인에 대한 동일한 등고선(소프트웨어로 계산된)을 연결하여 표시하고 있다.[5]

그림 1. 인위적으로 수위를 상승시켰을 때 보여지는, 그랜드 캐니언 지역의 디지털 고도 모델. 그것은 그랜드 캐니언이 아직 파여지지 않았을 때, 카이밥 고원의 동쪽에 형성될 수 있었던 호수들의 윤곽을 보여준다. 댐이 붕괴되었을 때, 현재처럼 물이 카이밥 고원의 높은 곳을 관통하여 흘러나가기 보다, 고도가 더 낮은, 논리적으로 파여져야 하는 지점을 화살표는 가리키고 있다.

브라운은 매우 간단하게 댐 붕괴 과정을 기술했다. 그래서 오스틴은 그러한 붕괴에 대한 일반적인 개념에 대한 개괄만을 소개했다. 댐 붕괴 이론이 소개됐을 때 매우 자주, 격변적으로 파여졌던 다른 협곡들이 참고문헌으로 제시됐었다. 가령 :

•1980년 세인트 헬렌 산(Mount St Helens)의 화산 폭발의 뒤이어 파여진 협곡들.

•”미졸라 호수 홍수(The Lake Missoula Flood)”에 의해 원인된 화산용암 지대(Scablands).

•빗물 배수에 의해 원인된 미국 워싱턴주 왈라왈라 근처의 버링감 캐니언(Burlingame Canyon).

그럼에도 불구하고 좀 더 자세히 살펴본다면, 댐 붕괴 이론에 의해서는 적절히 설명되지 않은 그랜드 캐니언의 많은 모습들이 있다. 먼저 그랜드 캐니언과 위에 나열된 캐니언 사이에는 분명한 물리적 차이가 있다. 예를 들어, 세인트 헬렌 산의 협곡들은 그랜드 캐니언에서 보여지는 것과 같은 브랜치 구조(branching structure, 나뭇가지 구조)를 보여주지 않는다. 화산용암 지대(Scablands)는 분명한 다중의 수로화된 패턴을 가지고 있다.(그림 4) 이것은 그랜드 캐니언에서는 완전히 없는 것이다. 그러나 두 호수로부터 분출된 막대한 양의 물이 그 지형을 파내었다면, 예상될 수 있는 것이다.

그림 2. 그랜드 캐니언의 항공사진은 브랜치 구조(branching structure, 나뭇가지 구조)를 분명하게 보여주고 있다. 콜로라도 강은 오른쪽으로부터 왼쪽으로(동쪽에서 서쪽으로) 흐른다. 화살표는 캐니언의 측면 브랜치들을 보여주고 있다.


그림 3. 세인트 헬렌 산(Mount St Helens)의 '리틀 그랜드 캐니언(Little Grand Canyon)'의 가장자리는 그랜드 캐니언의 브랜치 구조를 나타내지 않고, 비교적 똑바로 나있다.


마이크 오드(Mike Oard)는 댐 붕괴 이론에 대한 다섯 가지 이의를 제시했다.[7] 그것은 노아 홍수 물이 동쪽에서 서쪽으로 물러가면서, 캐니언을 서쪽으로부터 동쪽으로 파내었을 가능성을 제시했다. 이 논문은 그랜드 캐니언의 기원에 관한 다른 이론들에서 설명될 필요가 있는, 그랜드 캐니언의 주요한 그리고 독특한 일부 특성들을 논의하고자 한다. 그리고 이러한 특성들은 소위 ”물러가는 홍수 시나리오(Receding Flood Scenario, RFS)”와 매우 적합함을 보여주고 있다.

그림 4. (과거 미졸라 호수의 붕괴로 엄청난 량의 호수 물이 격변적으로 휩쓸고 지나갔던 흔적을 남겨놓고 있는) 미국 북서부 지역의 수로화 된 화산용암지대(Scablands)의 다중 하천 및 병렬 구조는 그랜드 캐니언과 상당히 다르다. 수로들은 그랜드 캐니언에 있는 브랜치 구조들을 나타내지 않고 있다.


구글어스(Google Earth)를 활용한 연구

노아의 홍수는 전 지구적 사건이었기 때문에, 전례 없는 구글어스의 기능은 지구의 지형을 변화시켰던 홍수의 영향을, 거대 스케일로 이해하는데 매우 큰 도움을 주고 있다.

참고문헌들의 사용 외에도, 구글어스는 그랜드 캐니언의 형성 기원을 연구하는 데 있어서, 한 중요한 도구가 되고 있다. 구글어스는 지형의 3D 디지털 고도 모델로 투사된, 지구 표면에 대한 상세한 위성사진을 제공한다. 그러한 장엄한 항공사진과 흥미로운 위성사진들은 지상과 현장 작업으로는 절대로 깨달을 수 없는, 많은 부분들을 보여줄 수 있었다. 노아의 홍수는 전 지구적 사건이었기 때문에, 전례 없는 구글어스의 기능은 지구의 지형을 변화시켰던 (여기에서는 그랜드 캐니언) 대홍수의 영향을 거대 스케일로 이해하는데 매우 큰 도움을 주었다.

 

설명이 필요한 그랜드 캐니언의 지형들


특징 1 : 그랜드 캐니언은 더 높은 고도의 지형을 관통하여 파여져 있다.

그림 5는 왼쪽의 카이밥 고원 북쪽 산들로부터 시작하여, 오른쪽의 그랜드 캐니언으로 이어지는 그랜드 캐니언의 지형에 대한 북-남 단면도를 보여준다. 이것은 소위 ‘그랜드 계단(Grand Staircase)’이라고 불려진다. 그랜드 캐니언은 중간에 있는 초코릿 절벽(Chocolate Cliffs) 근처의 더 낮은 고도의 지역을 관통하지 않고, 오른쪽에 더 높은 카이밥 고원의 부분을 관통하여 자르고 있는 것을 볼 수 있다. 이것은 그림1 에서 화살표가 가리키고 있었던 지역과 대략적으로 상응한다. 댐 붕괴가 더 낮은 부위보다, 오른쪽의 더 높은 산들을 관통하여 나있는 이유는 무엇일까? 

그림 5. 맨 오른쪽에 있는 그랜드 캐니언의 벽을 구성하고 있는, 소위 '그랜드 계단'이라 불리는, 그랜드 캐니언의 지질학적 지층들을 보여주고 있는 남북 단면도.


물러가는 홍수 시나리오(Receding Flood Scenario, RFS)는 더 높은 지역이 파여져 있는 것을 매우 잘 설명할 수 있다. 그랜드 캐니언 지역(북미대륙의 거의 대부분)이 1km 또는 그 이상의 깊이의 물들로 완전히 뒤덮여 있었던 것을 생각해 보라. 이러한 막대한 양의 물들은 동쪽으로 500~600km에 확장되어 있었을 것이다. 그리고 그것은 북남 방향으로도 비슷했다. 우리는 이 엄청난 물을 ‘그랜드 캐니언 내해(Grand Canyon Inner Sea)’라고 부를 것이다. 그리고 그것은 나중에 더 자세히 논의할 것이다.

대륙이 압착되고, 대양 분지가 가라앉고 있는 중이었기 때문에, 콜로라도 고원 지역은 융기되었고, 따라서 그랜드 캐니언 내해의 물은 서쪽 방향으로 후퇴하면서 수위가 낮아지고 있었다. 물은 더 높은 지역에서 낮은 지역으로 많은 경로들을 따라 흘렀다. 고원, 산, 언덕, 또는 모래둑과 같은 지형이 물속에 있을 때, 물은 지형의 왼쪽과 오른쪽으로 흐를 뿐만 아니라, 물에 잠겨있는 그 꼭대기 위로 넘어서도 흐를 것이다. 어떤 곳에서는 물이 길을 찾을 여지가 적기 때문에, 꼭대기를 넘어 흘러가는 물의 속도는 증가한다. 따라서 지형 상단의 일부는 다른 부분이나 측면보다 빠르게 침식되기 시작한다. 이 방법으로 수로(channel)나 작은 협곡(gully)은 고도가 높은 부분을 관통하여 바로 형성될 것이다. (그림 6).

그림 6. 수면이 낮아지면서(단계 1-5), 작은 협곡(gully)이 어떻게 높은 고도의 지역에 형성될 수 있었는지를 보여주는 개략도. 그림 B는 그림 A의 점선 수직면에 대한 단면도이다. 그림 A에서 홍수 물이 침수된 지역의 위를 오른쪽에서 왼쪽으로 흐를 때, 높은 고도에서 물이 여전히 측면으로 흐르고 있음에도 불구하고, 협곡을 파낼 수 있다. 협곡이 깊어지면서,  그것은 물의 흐름과 반대 방향으로 성장한다(그림 A).

수위가 계속 떨어짐에 따라, 이 초기 수로의 측면이 물 밖으로 드러나게 된다.(그림 6의 1단계). 그러나 물은 빠르게 지속적으로 흐를 것이다. 왜냐하면 여전히 배수가 필요한 엄청난 양의 물이 있기 때문이다. 물속에 있는 산은 물러가는 물을 방해하므로, 물은 모든 가능한 경로를 통해서 벗어나려고 할 것이다. 따라서 높은 지형의 측면을 따라 흐르는 물이 여전히 있을지라도, 수로는 더 깊게 깊게 파여질 것이다. 내해의 수위가 서서히 충분히 낮아지면, 물은 수로를 통해 계속 흐를 것이고, 수위가 낮아지는 만큼 더 깊게 침식될 것이다.(그림 6의 B). 결과적으로 수로는 지형이 가장 높았던 지역에서 시작하여, 지형이 낮은 지역으로 이동하면서, 상류 방향으로 길게 자라갈 것이다. 이 과정에서 가장 주목할 만한 것은 협곡이 파여지는 방향이 물의 흐름 방향과는 반대라는 것이다.(그림 6의 A).

이 배수 과정에서 또 하나의 주목할 만한 특징은, 일단 수로가 일정 길이에 도달하면, 물이 고원으로부터 계속 빠져 나감에 따라, 수로는 나무처럼 가지(branch)가 발달하기 시작한다는 것이다. 메인 수로(main channel)는 측면 수로(side channels)들을 발달시킬 것이며, 그것들은 다른 측면 수로를 발달시킬 것이다. 메인 수로(본류)의 길이가 자라고, 측면 수로들이 발달되면서, 고원의 물은 수로 안에서 횡 방향으로 흐를 수 있다. 이러한 횡 방향의 흐름은 결국 옆으로 계속 자라나는 2차성 수로를 개시한다. (특징 2와 6 참조).

네덜란드의 북서쪽 바덴 해(Wadden Sea)와 같이 많은 모래언덕들이 있는 조수 지역을 관찰함으로써, 이 과정이 어떻게 브랜치 구조를 형성하는지를 볼 수 있다. 협곡은 고원, 산, 언덕, 모래 둑과 같은 물속 지형을 통과하는 매일의 조수(tides)에 의해 파여졌다. 물은 지형의 왼쪽과 오른쪽으로 흐를 뿐만 아니라, 수중에 남아있는 지형의 꼭대기 위로 흐를 것이다. 꼭대기 위로 흐르는 물은 어떤 지점에서는 길을 찾을 여지가 적기 때문에, 속도가 증가한다. 따라서 지형 상단의 어떤 부분은 다른 부분이나, 측면보다 빠르게 침식되기 시작한다. 이러한 방식으로 모래언덕의 높은 지점에서, 물러가는 해수에 의해서 수로 또는 협곡이 파여질 수 있다.

그림 7. 네덜란드의 바덴 해에 있는 모래언덕(sandbanks)을 가진 갯벌지역은, 물러가는 해수가 통과할 수 있도록, 매일의 조수가 어떻게 모래언덕의 높은 지점을 파낼 수 있는지를 보여준다.


그림 7은 바덴 해에서 이러한 효과에 대한 예를 보여준다. 밝은 색 영역은 이미 마른 상태이다. 점선은 모래언덕(sandbank)의 높은 지점을 나타낸다. 큰 검은 색 화살표는 모래언덕이 물에 잠겼을 때 흐르는 해수의 방향을 나타낸다. 몇몇 작은 협곡은 높은 고도에서(그림에서 위로 향하고 있는 작은 흰색 화살표가 가리키고 있는 부분) 어떻게 파여졌는지를, 그리고 이 그림에서 여전히 수중에 있는 낮은 수위에서도 갈라져 있는 것을 분명히 볼 수 있다.(중간에 아래쪽을 가리키는 좁은 흰색 화살표). 이 작은 협곡들의 구조는 그랜드 캐니언에 있는 것들과 정확히 일치하지는 않지만, 그것은 다음과 같은 이유 때문일 수 있다 :

• 그랜드 캐니언의 규모는 수십 수백 배 이상의 규모이다.

• 이들 작은 협곡들을 통과하여 흐르는 물의 양은 그랜드 캐니언을 흘렀던 물보다 수십 수백 배로 적은 양이다.

• 그랜드 캐니언은 일회성 사건이었고, 조석 효과는 매우 제한적일 수 있다. 바덴 해의 모래언덕과 작은 협곡들은 장기간의 조수에 의한 결과이다.


특징 2 : 그랜드 캐니언의 서쪽 절반에 나있는 브랜치 구조

그림 8은 그랜드 캐니언의 서쪽 부분에서 볼 수 있는 전형적인 나뭇가지 모양의 브랜치 구조를 보여준다. 점선은 그랜드 캐니언의 측면 또는 가장자리를 나타낸다. 여러 지점에서 브랜치(branches)들은 그랜드 캐니언에서 멀리로 뻗어가면서 관측될 수 있으며, 이러한 브랜치들은 멀리로 멀어지면서 좁아진다. 이러한 좁아짐은 이들 브랜치들의 가장자리가 삼각형 모양을 갖는 경향이 있음을 의미한다. 또한 브랜치 자체도 브랜치들을 가지고 있고, 그것들은 더 갈라질 수도 있다. 브랜치의 가장자리는 항상 V 또는 U자 모양을 가지는 것처럼 보인다. 댐 붕괴와 같은 한 번의 '급격한' 고속의 물 흐름은 화산용암지대(Scablands)에서 관측될 수 있는 것처럼, 평행한 수로 같은 구조를 만들었을 것이다.(그림 4). 그것은 이러한 종류의 브랜치 패턴을 만들지 않을 것이고, V 자형과 U 자형의 작은 협곡들도 만들지도 않을 것이다.

그림 8. 그랜드 캐니언의 서쪽 부분의 브랜치 구조(branching structure). 브랜치는 브랜치의 출구에서 멀어지면서 폭이 점점 좁아지는, V 또는 U자로 형성되어 있다. 브랜치 자체도 브랜치들을 가지고 있는 모양은 프랙탈(fractals) 구조를 닮았다.  

그림 9. 나이아가라 폭포(Niagara Falls)는 계속되는 물 흐름에 의한 지속적인 침식이 U 자 모양을 만드는 방법을 보여준다. 폭포의 침식은 물 흐름과 반대 방향이다.

급경사면에서 현재에도 여전히 침식되고 있는, 이와 유사한 V 또는 U자 모양 침식의 멋진 예가 나이아가라 폭포(Niagara Falls)이다.(그림 9) 이것은 고원 위를 지속적으로 흐르는, 비교적 저속의 물 흐름이, 한 번의 댐 붕괴와 같은 사건보다 V 자 또는 U 자 형태의 침식 기원을 잘 설명할 수 있음을 보여준다. 나이아가라 폭포는 그림 6에서 설명한 것처럼, 물의 흐름 방향과 반대 방향으로 후퇴하고 있음을 주목하라. 주 협곡(main canyon)의 V 자 모양이 형성되면서, 그랜드 캐니언에서 관측되는 전형적인 브랜치 구조들을 형성하기 위해서는 다음과 같은 세 가지 조건이 필요하다 :

• 융기 지역을 뒤덮은, 주 협곡 안으로 쏟아져 들어오는, 많은 양의 물이 비교적 일정하게(또는 규칙적으로) 공급될 필요가 있다.

• 물이 양 측면에서 주 협곡으로 흐를 수 있도록, 융기 지역/고원은 평탄해야 한다. 융기 지역의 하류 경사면이 가파르면 가파를수록, 주 협곡의 V 자 모양은 더 짧고 좁아질 것이다. 융기 지역이 평탄한 경우, 주 협곡은 길고 넓은 V 자 모양을 가지며, 더 많은 브랜치들을 갖게 된다.

• 퇴적물은 비교적 부드러울 필요가 있다. 그렇지 않으면 침식이 너무 느려서, 낮아지는 수위와 보조를 맞출 수 없다. 단단한 암석에서는, 골짜기/협곡이 침식될 시간을 갖기 전에, 융기 지역의 양 측면으로 흘러 나갔을 것이다.

노아홍수의 물러가는 물은 협곡의 측면에서 쏟아져 내림으로 인해, 그랜드 캐니언 측면을 따라 V 자 모양의 브랜치 구조를 만드는 데 필요한 것과 정확히 같다. 따라서 우리는 그랜드 캐니언의 많은 또는 모든 절벽들이 이전에는 폭포라고 결론을 짓는다! 그것은 장관이었음에 틀림없었을 것이다. 물은 가장자리로 쏟아져 내려 그랜드 캐니언으로 흘러 들어갔고, V 자 모양을 조각하였다.

그림 10. 아르헨티나 연안에 있는 브랜치 유형의 수로들은 그랜드 캐니언의 브랜치 구조와 비슷한 모양을 나타내고 있다.


그랜드 캐니언의 중앙에 있는 훨씬 더 깊은 수로는 주 협곡이 파여진 이후에 형성되었으며, 오늘날 그곳을 통과하는 콜로라도 강(Colorado River)의 정상적인 배수로 인해서 여전히 침식되고 있다 (특징 5 참조).

아르헨티나의 해안을 따라, 우리는 그림 10과 같이 물러가는 조수 물(tidal water)에 의해서 원인된, 아름다운 브랜치 구조의 사례를 발견할 수 있다. 중앙의 넓고 평탄한 진흙 평지에 파여진 좁은 협곡과 그랜드 캐니언의 특징을 비교해 보라. 또한 측면의 더 가파른 '절벽'과 절벽 뒤쪽의 낮은 부분을 향한 브랜치 '협곡'들을 주목하여 보라.


특징 3 : 그랜드 캐니언의 동쪽 절반의 비-브랜치 구조.

그림 2에서 볼 수 있듯이, 서쪽 부분에서 볼 수 있는 분명한 브랜치 구조들이 카이밥 고원(Kaibab Plateau)의 북서쪽에 있는 그랜드 캐니언의 동쪽 부분에서는 볼 수 없다. 노스 림(North Rim)에서, 캐니언은 산악지역에서 관측될 수 있는 전형적인 침식 패턴을 보여준다. 사우스 림(South Rim)에 있는 절벽들은 그랜드 캐니언으로 미끌어져 내린 많은 산사태(landslides)들의 모양과 매우 흡사하다. 이러한 특징은 그랜드 캐니언의 동부 지역을 형성했던 과정이 서부 지역에서 브랜치 구조들을 형성했던 과정과는 다를 수 있음을 가리킨다. 이는 그랜드 캐니언이 두 단계, 즉 서쪽 단계와 동쪽 단계의 두 주요 단계로 형성되었다는 것을 의미한다. 두 단계 모두 처음에는 더 높은 고원들을 관통하여 (즉, 카이밥 고원의 관통과 후알라파이 고원(Hualapai Plateau)의 관통) 자르는 것이 포함되어 있었다.(아래 특징 4 참조). 둘 다 동시에 형성되었을 것이다. 그러나 서쪽 팔은 결국 수위가 충분히 낮아졌을 때, 동쪽 카이밥 구역으로 연결될 수 있었다.

댐 붕괴 이론이나, 전형적인 동일과정설적 견해는 이러한 차이점을 적절히 설명할 수 없다.


특징 4 : 그랜드 캐니언의 끝부분에 있는 다수의 '유출 지점들’

그림 11은 그랜드 캐니언이 서쪽 끝에 있는 지역을 보여 준다.(동쪽 방향을 바라보며). 이 지역은 길이 약 160km, 높이 1,000m에 이르는 거대한 절벽/능선(그림 11에서 흰 선으로 표시됨)이 특징적으로 존재한다. 그랜드 캐니언은 현재 후알라파이 고원(Hualapai Plateau)를 관통하여 자르고, 5번의 절벽에서 끝난다. 그랜드 캐니언을 통과하여 흐르는 콜로라도 강은 이 지점에서 절벽에서 나와서, 그림 11의 밑 부분에서 볼 수 있는 미드 호수(Lake Mead)로 들어간다.

그림 11. 후알라파이 고원의 절벽을 가로질러 동쪽을 바라보는 그랜드 캐니언의 서쪽 끝. 그랜드 캐니언(화살표 번호 5)의 유출 지점과는 별도로, 유사하지만 더 작은 '유출' 지점들이 여러 군데가 존재한다. (1~4번, 6~7번).


그러나 거기에는 급경사를 이루며 파여진 여러 다른 '유출 지점(outflow points)', 또는 작은 협곡들이 존재한다. 그것들은 그랜드 캐니언보다는 작지만, 모양은 비슷하다. 번호 1~4는 그랜드 캐니언 출구 인근에 있는 이들 작은 유출 지점들을 표시한 것이다. 이들 골짜기/협곡은 그들 뒤로 있는 배후 지역의 배수구로서의 역할을 하고 있지 않다. 번호 6은 또 다른 그러한 유출 지점인데, 현재 배수구로서 역할을 하고 있다. 번호 7은 그랜드 캐니언의 측면에 있는 또 다른 유출 지점이다. 이것은 현재의 하천 계가 형성했다고 보기에는 더욱 곤란하다. 왜냐하면 그랜드 캐니언이 바로 뒤에 있고, 모든 배수를 처리하고 있기 때문이다.

그랜드 캐니언을 둘러싼 전체 고원지대의 고도는, 동쪽에서 서쪽으로 그랜드 캐니언을 따라 하류로 이동하면서, 서서히 높아지고 있다. 고원의 고도는 앞에서 언급한 능선/절벽(급경사)에서 '갑자기' 떨어진다. 그림 12는 이 절벽을 따라 남쪽을 바라본 전경으로, 왼쪽으로는 고원, 오른쪽으로는 낮은 지대가 있다.

그림 12. 후알라파이 고원을 가로질러 남쪽을 바라보는 전경. 급경사면의 협곡들로 파여진, 그림 11에서 표시된 번호가 매겨진 동일한 유출 지점을 보여 주고 있다. 물러가는 홍수 물은 동쪽에서 서쪽으로, 즉 왼쪽에서 오른쪽으로 흘렀다.


전 지구적 홍수(global Flood)는 이들 절벽으로 파여진 여러 유출 지점들에 대한 간단하고 설득력 있는 설명을 제공한다. 노아 홍수의 후반기에 그랜드 캐니언 내해의 물이 대륙에서 태평양 분지로 물러갈 때 (왜냐하면 대륙이 압착되었고, 그랜드 캐니언 지역은 융기되었기 때문에), 동쪽에서 흘러오던 물은 이 산등성이 뒤에서 갇혔고, 이 물은 이들 7개의 출구 지점에서 능선을 관통해 흐르도록 강요당했다. 따라서 이 지점에서 깊은 협곡들이 파여졌고, 이 지역에서 볼 수 있는 브랜치 구조들과 V자 구조를 만들어냈다.

수위가 떨어지면서 그 유출 지점들 중 하나(아마도 그 때에 가장 깊고 길었던 것)만 계속 흐르게 되었고, 다른 유출 지점들은 배출구로서의 역할을 끝냈다. 후알라파이 고원에 있는 유출 지점 5번(그랜드 캐니언)은 그 뒤에 있던 나머지 물을 배수하는 역할을 했으며, 더 깊게, 그리고 더 멀리 동쪽으로 계속 침식을 진행했다. 이것은 카이밥 고원에서 보았던 것과 유사한, 더 높은 지대를 자르고 파냈던 예이다.


그랜드 캐니언 출구의 북쪽 가장자리(rim)와 남쪽 가장자리의 다른 침식 패턴

알렌 로이(Allen Roy)는 ‘최근의 초거대 홍수(recent gigantic flood)’가 후알라파이 고원을 침식시켰다고 결론지었다.[8] 위에서 설명한 바와 같이, 유출 지점들은 이러한 관측에 매우 적합하다. 이상하게도, 브랜치 구조나 V 자 모양의 구조들은 그랜드 캐니언 유출 지점의 남쪽 측면(southern side)에는 존재하지 않는다.(그것들은 북쪽 측면에 있다). 우리가 지형을 조사했을 때, 이러한 현상은 더 높았던 고원 북서부 지역에 대한 유출 지점의 역할을 북쪽 측면이 했기 때문임이 틀림없음을 알 수 있었다. 그러나 남쪽 측면은 더 낮은 남쪽 지역으로 인해 배수될 필요가 없었다. 남쪽 측면은 물러가는 홍수 물이 수마일 폭의 강으로 흘러가게 하는 굴곡으로서의 역할을 했다.(그림 15 참조). 따라서 그곳에서 후알라파이 고원을 더 부드럽게 침식했다. 가장 남쪽에 있는 지점(그림 15에서 '물음표'가 있는, Peach Springs으로 불리는)에서, 이 그랜드 캐니언 '강'의 또 다른 두 번째로 큰, 그러나 일시적이었던, 유출 지점이 있었을 수도 있다.

<다음에 계속 됩니다>


*참조 : 그랜드 캐니언의 형성 기원에 대한 “물러가는 홍수 시나리오” 2

http://creation.kr/Sediments/?idx=1288681&bmode=view


번역 - 미디어위원회

링크 - http://creation.com/grand-canyon-origin-flood 

출처 - Journal of Creation 24(3):106–116, December 2010.

미디어위원회
2020-01-01

도버 해협의 백색 절벽 

: 이 거대한 석회암층은 전 지구적 홍수를 가리킨다.

(White Cliffs of Dover)


     인상적이고 극적인 영국 도버의 백색절벽(White Cliffs, 하얀 절벽)은 영국과 프랑스를 나누고 있는 도버 해협(Strait of Dover)의 남쪽 입구에 하나의 요새처럼 서있다. 해안을 따라 16 km를 뻗어 있는 이 높이 솟아오른 가파른 절벽은 영국을 적들의 상륙으로부터 막아주고 있을 뿐만이 아니라, 더욱 중요하게도 창세기 6~9장에 기술된 전 지구적인 홍수를 가리키고 있다.


백악층들

백악(Chalk) 층들은 영국, 프랑스, 북아일랜드 등을 포함하여 유럽의 여러 장소들에서 발견된다. 이 층은 심지어 중동에서 카자흐스탄까지 이르도록 확장되어 있다. 광대한 백악층들은 또한 테네시, 네브라스카, 미시시피, 그리고 캔자스 주들을 포함하여 북아메리카 도처에서 발견된다.

많은 세속적 지질학자들은 이 백악층들은 수백만 년에 걸쳐서 천천히 그리고 점진적으로 형성되었다고 믿고 있기 때문에, 이 지층은 오래된 지구 연대를 가리키고 있다고 주장한다. 그러나 성경적 조망으로 이 증거들을 해석할 때, 우리는 수천 년이라는 성경적 시간 틀과 조화되는 이들 백악 형성에 관한 설명이 존재한다는 것을 보게 된다. 이들 백악층들의 주요 형성 원인은 대격변이었던, 전 지구적 홍수였다.


형성

백악은 거의 대부분 탄산칼슘(calcium carbonate)으로 구성되어 있다. 매우 순수한 석회석 형태인 이 탄산칼슘은 유공충(foraminifera), 석회조류(calcareous algae), 코콜리스(coccoliths), 랍돌리스(rhabdoliths) 등을 포함하여 무수한 미세한 생물체들로 구성되어있다. 오늘날 이들 미세 생물체들이 죽고 나서, 그들의 칼슘이 풍부한 껍질들은 대양 바닥(자주 해수면 아래 거의 4.6~4.9km 까지)에 축적된다. 이들 껍질들은 오늘날 지구 표면의 1/4을 덮고 있다. 보고들에 의하면, 이들 껍질들은 10일 또는 그 이상에 걸쳐 대양바닥에 도달하며, 1천 년에 1.25~7.5cm 율로 쌓이는 것으로 평가되고 있다.


해석

1) 진화론적 견해

측정된 백악의 축적율은 이들 백악층들이 빠르게 형성될 수 없었을 것이라는 것을 입증하는 것처럼 보인다. 진화론자들은 이들 백악층들이 ‘백악기(Cretaceous period)’ 동안인 대략 1억 년 전에서 7천만 년 전 사이에 형성되었을 것이라고 주장한다. 그때 영국의 남쪽 지역은 얕은 열대 바다로서 물속에 잠겨 있었을 것이라고 추정한다. 백악은 천천히 쌓여졌고, 땅은 지구 지각의 움직임에 의하여 도버해협 위로 105m 이상 융기되어, 이 절벽들을 만들었다는 것이다.

2) 성경적 견해

그러한 느린 축적율로 어떻게 그러한 두터운 백악층이 성경적 시간 틀로서 6,000년이 조금 넘는 시간 안에 형성될 수 있었을까? 그러한 장대한 백악층들이 수천 년 내에 형성되기 위해서는, 과거 언젠가 미생물들의 엄청난 증식이 있었음에 틀림없다. 사실 적절한 환경이 조성된다면, 대양저에 이들 미생물체들의 빠른 생성과 축적은 가능하다. 적절한 환경은 격렬한 물의 흐름, 강한 바람,

 
노아 홍수 시에 동반된 격변적 화산폭발들에 의한, 대양 온도의 상승, 엄청난 양의 CO₂방출, 격렬한 강우, 바닷물과 민물의 뒤섞임과 혼합 등은 이들 미생물체들의 폭발적인 증식(blooming)과 백악의 빠른 축적을 유발할 수 있는 적절한 환경을 만들었을 것이다. 도버의 백색절벽에 있는 3 주요한 부분들은 일 년 정도의 노아 홍수 동안 발생했었을 백악 형성을 야기한 미생물체들의 세 번의 주요한 폭발적 증식에 대한 증거를 제공하고 있다. 

또한 백악의 순도(purity)는 그 자체가 빠른 축적을 가리키는 것이다. 수백만 년 동안에 걸쳐 백악이 축적되었다면, 그동안 다른 퇴적물들(사암, 셰일, 이암 등)은 왜 퇴적되지 않았는가? 백악을 오염시킬 수 있는 다른 퇴적물들은 전혀 퇴적되지 않고, 수백만 년 동안, 광대한 넓이로, 오로지 백악만 계속 퇴적되었다는 시나리오는 도저히 믿기 힘들다.

도버의 백색절벽이 한 번의 전 지구적인 홍수에 의해서 형성되었다는 추가적인 증거는, 백악층들은 얇고 단단한 층과 두텁고 부드러운 층들로 교대로 쌓여져 있다는 사실이다. 단단한 층(hardgrounds로 불려지는)에서는 연체동물 껍질 화석들과 다른 바다생물(일부는 직경 1m 정도의 거대한 암모나이트 같은 것도 있음) 화석들이 발견된다. 이러한 생물들은 느리고 점진적인(1천 년에 몇 cm 정도의) 축적으로는 산 채로 묻힐 수 없었을 것이다. 네덜란드에 있는 같은 백악층은 매우 커다란 바다공룡인 모사사우르스(Mosasaurus)의 두개골을 포함하고 있었다. 바다생물들은 노아 방주에 타고 있지 않았기 때문에, 격렬하고 파괴적인 홍수를 견뎌야만 했다. 바다생물들은 빠르게 형성되는 백악과 다른 퇴적층들 안으로 연속적으로 파묻혀버렸을 것이다. 그것이 이제는 바다 보다 훨씬 높은, 백악의 가장 위쪽 층에서도 바다생물 화석들을 발견할 수 있는 이유이다.


숙고해 보라

영국 도버해협의 백색절벽은 단지 대략 4,500년 전에 있었던 한 번의 전 지구적인 홍수를 증거하고 있다. 그 증거는 성경적 조망으로 바라보았을 때에 확연해지는 것이다.



번역 - 미디어위원회

링크 - http://www.answersingenesis.org/articles/wog/white-cliffs-dover

출처 - Answers, 2008. 8. 21.

미디어위원회
2019-12-10

지질학 : 지속적으로 번복되고 있는 과학.

(Geology: A Science in Constant Revision)

David F. Coppedge


      느리고 점진적인 동일과정설 지질학은 1830년에 시작되었다. 시간이 지나면서 이 이론은 빠르고, 급속하고, 다이나믹했던, 격변적 지질학으로 개정되고 있다.

과학자들은 관측되지 않았고, 기록되지 않았던 먼 과거의 역사는 물론이고, 인류의 역사적 사건을 아는 데에도 어려움을 겪어왔다. 예를 들어, PNAS(2019. 12. 2) 지에 게재된 글에서 6명의 연구자들은 황제 유스티니아누스(Justinian, BC 541~750년) 시대에 역병(plagues)으로 인한 사망자 추정치는 완전히 틀렸다고 말한다. 역병은 대부분의 사가들이 오랫동안 가정해왔던 것처럼 완전히 재앙적인 것이었다. 기록되어있는 역사도 이렇게 틀렸다면, 목격자가 없는, 수백 배나 더 오래 전에 일어났던 사건에 대해서 지질학자들은 얼마나 잘못될 수 있는 것일까?


울프 크릭 분화구는 이전에 생각했던 것보다 젊다.(Science Daily, 2019. 11. 21). 호주에 있는 울프 크릭 분화구(Wolfe Creek Crater, 세계에서 두 번째로 큰 운석 충돌 크레이터)의 진화론적 연대로 30만 년 전으로 말해져왔었다. 이제 과학자들의 그러한 추정 연대는 완전히 틀렸다는 것이다. 이제 그 분화구의 연대는 12만 년 전이라는 것이다. 모든 특성들을 볼 때, 그 분화구의 모습은 그보다도 훨씬 젊어 보인다. 그러나 진화론자들은 오랜 연대를 좋아하고, 젊은 지구론자들에게 빌미를 주고 싶지 않다. 12만 년은 이제 합의된 연대가 되었다! 우주 방사성핵종 연대(cosmic radionuclide dating)는 그렇게 말한다는 것이다! Meteoritics and Planetary Science(2019. 9. 1) 지의 최신 시나리오를 살펴보면, “지구과학적 모습들을 고려할 때, 가장 적절해 보이는 분화구의 나이는 120,000년 ± 9,000년이다.” 이것은 전문가들에 의한 이전의 합의된 추정 연대에 1/3에 불과한 연대이다. 2/3의 연대가 틀렸다는 것이다.


.아리조나의 베린저 운석 크레이터(Barringer Meteor Crater)


거대한 쓰나미가 내륙에서 탱크만큼 무거운 바위를 밀어버렸다고 과학자들은 말한다.(Fox News Science, 2019. 11. 22). 지질학자들은 물의 힘을 과소평가하는 경향이 있다. 사진 속의 거력(boulders)을 보라. 탱크만큼 무거운 이 바위는 1,000년 전 오만(Oman)의 쓰나미로 인해 절벽 위로 들어 올려졌다고 기사는 말한다. 창조 지질학자들은 그랜드 캐니언의 처음 퇴적층인 타핏 사암층(Tapeats Sandstone)에 있는 집채만한 거대한 바위를 보여줬었다.(ICR 글 참조). 그 바위를 이동시켜 그랜드 캐니언의 대부정합 꼭대기에 재퇴적시켰던 물의 힘은 현대에 보았던 어떤 것보다 강했을 것이다.


외계에서 날아온 유성 충돌로 인해 판구조론의 “파열(bursts)”이 유발됐을 수 있다.(Geological Society of America, 2019. 11. 25). 상당한 크기의 유성 하나가 전체 이론을 폐기시킬 수 있다. 확실히 지질학자들은 판구조론(plate tectonics)을 이해하지 못하고 있었다.

지구 표면이 원시의 뜨거운 곤죽(mush)에서, 판구조에 의해서 지속적으로 재포장되는 암석질의 행성으로 언제 그리고 어떻게 진화되었는가?는 지구과학 분야에서 가장 큰 의문으로 남아있는 질문이다. 이제 Geology 지에 발표된 새로운 연구에 따르면, 이 지상의 전환은 실제로 외계에서 날아온 유성의 충돌에 의해 유발됐을 수 있다는 것이다.

호주 맥쿼리 대학(Macquarie University)의 행성연구센터 소장인 크레이그 오닐(Craig O'Neill)은 “지구는 내부 과정만 중요한 하나의 격리된 계로 생각하는 경향이 있다. 하지만 지구의 행동에 대한 태양계 동력학이 미치는 영향이 점점 더 많이 보고되고 있다"고 말했다.

충돌은 자연주의적 진화 지질학자들이 태양계의 모든 것을 설명할 때 자주 사용하는 마법의 탄환이다. 이제 세속적 지질학자들은 판구조 운동의 시작을 설명하기 위해 그것을 불러내고 있었다. 큰 유성은 이것을 할 수 있었으며, 골디락스(Goldilocks) 기준에 맞도록 미세하게 조정된 충돌이었다는 것이다. 즉, 너무 작아 아무 것도 일으키지 못하고, 너무 커서 지구를 파괴하지도 않을 정도의 것이었다는 것이다.


화성 : 사태가 어떻게 형성되는지에 대한 수수께끼가 풀렸을 수도 있다.(The Conversation, 2019. 12. 3). 어떻게 사태(landslides)는 물리법칙에 의해 갈 수 있는 거리를 넘어서 이동할 수 있었을까? 마찰은 일부 사태가 먼 거리까지 이동하기 전에 멈추도록 한다. "먼 거리를 이동한 사태(long runout landslides)"라는 기사에서 마그나리니와 미첼(Magnarini and Mitchell)는 이 미스터리를 다루고 있었다. 그것은 진동 이론, 소용돌이, 지층 두께에 기초한 새로운 개념에 기인한 것이라고 생각하고 있었다. 화성은 지구보다 사태를 더 잘 보존하고 있기 때문에, 연구자들은 화성의 그랜드 캐년이라는 마리너 계곡(Valles Marineris)에서 사태를 연구했다. 거대한 사태는 몇 시간 또는 몇 분 안에 빠르게 발생했다. 모이보이(moyboy)들의 오랜 연대는 필요하지 않았다.

---------------------------------------------------


세속적 지질학은 버몬트의 날씨와 비슷하다. 변화가 없어 지루한가? 마음에 들지 않으면, 5년에서 50년 정도 기다려보라. 가끔 혹독한 날씨를 경험하게 될 것이다.

세속적 천문학자들이 모든 것을 충돌로 설명하는 것을 보려면 CreationAstronomy.com에서 제공하는 Scott Psarris의 영상물 “우리의 창조된 태양계”를 보라.


출처 : ICR, 2019. 12. 4.

주소 :  https://crev.info/2019/12/geology-a-science-in-constant-revision/

번역 : 미디어위원회

미디어위원회
2019-11-28

그랜드 캐니언의 홍수 기원을 지지하는 관측들

(Observations Support Grand Canyon Flood Origin)

by Tim Clarey, Ph.D.


     오래된 지구 지질학자들은 그랜드 캐니언에서 관측되는 것들은 그랜드 캐니언의 기원에 대한 홍수 모델(Flood model)과 모순된다고 주장한다.[1] 그러나 최근에 미드호(Lake Mead)에 노출되어 있는 퇴적층은 그들의 주장을 반박하고, 대신 홍수 모델을 완전히 지지하고 있었다.

동일과정설적 지질학자들은 대홍수가 급격히 그랜드 캐니언을 파내었다면, 새로이 퇴적된 석화되지 않은(아직 돌이 되지 아닌) 퇴적층들은 붕괴되고, 얇아지고, 틈새로 떨어졌을 것이라고 주장한다. 사실상 그들은 수직 절벽이 없는, “노출된 제방의 기저부에 혼합된 퇴적물 더미”를 예측한다.[1]

또한 그들은 완전히 석화된 오래된 암석층만이 그랜드 캐니언의 수직 절벽과 경사면의 패턴을 유지할 것이라고 주장하고 있다. 그러면서 오늘날의 세계에서 이러한 과정이 관측되어왔다고 주장한다 : “그래서 실제로 관측되는 것은 무엇인가? 홍수지질학 모델이 예상하는 특징들은 관측되지 않았다. 기존의 지질학 모델에서 예상되는 특징들은 모두 관측되고 있다.”[1]

그림 1. 홍수 모델(A)에서 석화되지 않은 퇴적물의 거동(behavior of unlithified sediment)에 대한 헬블과 힐(Helble and Hill)의 예측. 그리고 이것과 비교된 동일과정설적 모델(B)에서의 예측.


그들의 주장은 세밀하게 살펴볼 때까지 설득력 있게 들린다. 그러나 그들의 주장은 전형적인 허수아비 치기 오류(straw man fallacy)의 사례이다. 실제로 그들이 예측하는 얇아짐과 꺼짐(slumping)을 관찰되지 않는다. 단지 오늘날 협곡 벽의 혼합된 수직 절벽과 경사면만 관찰된다. 그러나 이것은 홍수 모델을 반증하지 않는다.

동일과정설적 지질학자들도 그랜드 캐니언이 약 1,000 입방마일의 퇴적물과 암석이 제거됨으로써 형성되었다는 것에는 동의한다.[1] 협곡의 길이는 443km이다. 폭은 6~29km이며, 일부 지역에서는 깊이가 1800m나 된다.

1935년에 후버 댐이 건설되고 뒤로 미드호(Lake Mead)가 형성되었고, 물과 강의 퇴적물을 가두게 되었다. 눈 녹은 물과 강우로 인한 변동하는 수위로 인해, 호수는 1983년 해발 370m 수위에서 오늘날 약 324m까지 떨어졌다. 현재 호수 위로 보이는 흰색 띠(a bathtub ring)는 이러한 호수 수면의 낮아짐을 보여준다.

결과적으로, 콜로라도 강은 호수 동쪽 끝에 있는 이전 호수 퇴적물을 침식하여, 6~12m 높이의 모래 절벽을 노출시켰다. 이 절벽은 그랜드 캐니언이 파여질 당시의 많은 홍수 퇴적물처럼, 석화되지 않은 다져진 모래와 점토로 구성되어 있기 때문에, 홍수 모델을 완벽하게 테스트할 수 있게 해준다.

그림 2. “작은 그랜드 캐니언”처럼, 석화되지 않았음에도 수직으로 서있는 미드호의 퇴적물.(Image credit: Tim Clarey)


지난 8월, 나는 그랜드 캐니언의 마지막 160km를 래프팅 했다. 미드 호수에서 새롭게 노출된 퇴적물을 통과하면서, 지난 80년 이상 동안 퇴적된 석화되지 않은 모래와 점토의 빠른 침식을 직접 관찰했다.

놀랍게도, 노출된 호수 퇴적물은 그랜드 캐니언의 축소판처럼 보였다.(그림 2). 퇴적물의 혼합이나, 층들의 얇아짐은 없었다. 대신에 수직 모래 절벽, 일부 경사진 층, 더 수직적 절벽이 관측되었다. 실제로 절벽은 호수 흐름과 수위의 변동에 의해 원인된 사층리(cross-bedding)와 경사부정합(angular unconformities)을 빈번하게 보여주었다. 이 모든 특징들은 그랜드 캐니언의 암석지층에서 관측되는 것과 완벽하게 일치한다.

미드호에서 최근 노출된 "작은 그랜드 캐니언"은 정확히 홍수지질학자들이 예측하고 있는 것들이다. 물이 쌓아놓는 다져진 퇴적물은 석화되지 않은 경우에도 수직으로 세워져있었다. 오래된 지구 세계관에 기초한 막연한 추정이 아니라, 현장에서 실제 관측되는 것은, 대홍수 말기에 그랜드 캐니언을 파내었다는 홍수 모델과 완벽하게 일치하는 것이다.[2]



References

1. Helble, T. and C. Hill. 2016. Carving of the Grand Canyon: A lot of time and a little water, a lot of water and a little time (or something else?) In The Grand Canyon: Monument to an Ancient Earth. Tulsa, OK: Kregel Publications, 163-172.

2. Clarey, T. 2018. Grand Canyon Carved by Flood Runoff. Acts & Facts. 47 (12): 10-13.

* Dr. Clarey is Research Associate at the Institute for Creation Research and earned his Ph.D. in geology from Western Michigan University.

*Cite this article: Tim Clarey, Ph.D. 2019. Observations Support Grand Canyon Flood Origin. Acts & Facts. 48 (11).


*참조 1 : 그랜드 캐니언에서 전 지구적 홍수의 10가지 증거들 

http://creation.kr/EvidenceofFlood/?idx=1288480&bmode=view

그랜드 캐니언의 형성 기원에 대한 “물러가는 홍수 시나리오” 1

http://creation.kr/Sediments/?idx=1288680&bmode=view

그랜드 캐니언의 형성 기원에 대한 “물러가는 홍수 시나리오” 2

http://creation.kr/Sediments/?idx=1288681&bmode=view

그랜드 캐년이 노아의 홍수에 의해서 형성되었다고 보는 이유

http://creation.kr/Sediments/?idx=1288678&bmode=view

그랜드 캐니언의 구불구불한 협곡(또는 사행천)은 노아 홍수를 부정하는가? : 후퇴하는 노아 홍수의 물로 설명되는 말굽협곡.

http://creation.kr/Sediments/?idx=1288677&bmode=view

그랜드 캐니언, 오래된 지구의 기념비인가? 오래된 지구를 위한 어리석은 주장들

http://creation.kr/Sediments/?idx=1288692&bmode=view


출처 : ICR, 2019. 10. 31.

주소 : https://www.icr.org/article/observations-support-grand-canyon-flood-origin/

번역 : 미디어위원회

미디어위원회
2019-11-13

사납고 거칠었던 홍수들! 

: 유럽에서 거대 홍수의 흔적들과 영국해협 

(Wild, wild floods!)

Emil Silvestru 


      최근 영국인들은 무엇이 영국과 유럽대륙을 실제로 분리시켰는지를 알아냈다. 그것은 바로 격변적 대홍수였다. 그리고 홍수는 한 번만이 아니라 두 번이었다. 영국해협(English Channel) 바닥에 대한 세밀한 연구를 통해, 오늘날에는 모두가 북해(North Sea)로 흘러드는 템스(Thames), 솜(Somme), 라인-뫼즈(Rhine-Meuse), 스켈트(Scheldt) 강들의 물들은 과거 한 때 모두 한 고대의 강 계곡으로 모여졌던 것이 밝혀졌다.[1, 2]

고해상도의 대양저(seafloor) 영상은 한 고대의 강(an ancient river)뿐만 아니라, 평탄한 꼭대기의 길쭉한 유선형의 섬들(길이 10km, 폭 4km에 이르는)과 거의 폭 200m, 깊이 2-3m, 길이 10-15km의 홈(grooves)들이 나있는 흔적들과 같은 거대한 스케일의 홍수(megafloods)의 선명한 흔적도 드러냈다.[1] 


홍수는 오늘날 북해가 있는 곳에 위치하고 있었던 이전의 빙하 호수로부터 대략 1×10^6 m3/s의 얼음이나 눈이 녹은 물(融水, meltwater)을 방출시켰던 것으로 평가되었다. 진화론적(오랜 연대) 시간틀 안에서 최초의 범람 사건은 약 425,000년 전 빙하기 동안에 일어났다고 믿어지고 있다. 그러나 나의 견해로는, 최초의 침식 사건은 노아 홍수(약 4,500년 전, 창세기 8장)의 물러가던 물에 의한 것이었고, 유럽과 영국을 연결했던 육교(landbridge)를 관통하여 깊은 캐년을 파내었다. 이 육교는 거의 전적으로 백악(chalk)으로 이루어져 있는 윌드-아토이스 배사(Weald-Artois anticline)로서 알려진 하나의 구조적 산릉(structural ridge)이다.


그리고 마지막 강렬한 결빙의 사건 말에(진화론 과학자들이 20,000년 전에 일어났다고 믿고 있는) 한 커다란 융수 호수가 캐년의 북쪽에 형성되었고, 이 호수는 빙퇴석(moraines)이나 다른 어떤 장애물들에 의해 댐으로 막혀져 있었다고 믿어지고 있다. 어떤 시점에서 그 댐은 붕괴되었고, 이전의 홍수보다 더 클 수도 있는 홍수가 구조적 산릉에 남아있는 모든 것들을 휩쓸어가 버렸고, 오늘날 우리가 보고 있는 것과 같은 영국해협을 만들어버렸다는 것이다.[1, 2]
 

반복되는 역사

새롭게 받아들여진 이 거대홍수는 하렌 브레츠(Harlen J. Bretz)가 80여년 전에 미국 워싱턴 주의 ‘수로가 나있는 용암지대(Channelled Scablands)’는 한 거대홍수로 인하여 생겨났다고 제안하여 밝혀지기 시작한 일련의 과학적 성취물의 마지막 확증이 되고 있는 것이다.[4] 브레츠는 동일과정설을 믿는 지질학자들에 의해서 거의 50년 동안 조롱을 당했었고, 그의 생각은 철저히 거부당했었다. 오늘날 미줄라 호수(Lake Missoula)의 격변적 붕괴에 의한 미줄라 홍수(Missoula flood)는 광범위하게 받아들여진 설명이 되었고, 주기적 사건에 의한 것으로 주장하던 일부 사람들마저도 이제는 받아들이고 있다.[5].


그리고 캐나다 로렌타이드 빙상(Laurentide Ice Sheet)의 남쪽 경계에 형성되었던 초거대 융수 호수였던 아가시 호수(Lake Agassiz)도 동쪽으로 격변적으로 배수되면서 홍수를 일으켜, 나이아가라 협곡(Niagara Gorge)과 세인트 로렌스(St. Lawrence) 강을 지질학적으로 한 순간에 파내어 만들어버렸음이 밝혀졌다.[6, 7] 캐나다에서 행해진 더 많은 연구들은 빙상 하부에서도 거대한 홍수들이 반복적으로 일어났었음을 보여주고 있다.[8, 9] 나이아가라 단애(Niagara Escarpment)를 따라 행해진 나의 조사에 의하면, 그와 같은 빙저 층상범람(subglacial sheetfloods)들은 이 유명한 경계표(landmark)의 형성에 가장 책임있는 원인이었음으로 밝혀지고 있다. 앨버타의 로키산맥 밑에 있는 아가시 호수 서쪽 지역은 또 다른 대규모의 빙저 홍수(subglacial flood)가 대부분의 구릉들과 아마도 로키산맥 자체의 지형 모습도 만들었던 것으로 보인다. [9, 10, 11] 

.남극 대륙에 나있는 미로(Labyrinth).


이러한 발상의 전환이 탄력을 얻게 되면서, 유사한 홍수의 흔적들이 남극대륙(Antarctica)과 같은 곳에서도 발견되고 있다. 남극대륙 서부의 건조계곡(Antarctica’s Western Dry Valleys)들에 나있는 미로(Labyrinth)와 같은 괴상한 지형 모습들은 이제 중신세 중기(middle Miocene, 진화론자들에 의하면 인간이 존재하기 오래 전)에 ‘광대한 빙저 홍수들(extensive subglacial floods, 복수를 쓰고 있음에 주목하라!)’에 의한 것으로 귀착되고 있다.[12]. 이 모든 홍수들은 영국해협을 파내었던 것과 같은 급의 배출된 엄청난 물에 의한 것일 것으로 추정된다. 바다로 그와 같이 엄청난 양의 담수의 유입은 열염분순환(thermohaline circulation) 계와 지구의 기후에 분명하게 영향을 끼쳤을 것이다. [7, 13]


다음은 무엇?

북해 홍수(North Sea flood, 여기에서 나는 임시적으로 이 명칭을 사용하겠다)는 물리적으로는 현대지질학의 발상지에서 일어난 홍수이지만, 지구과학에서 뒤늦게 알려지기 시작했다는 사실을 주목하는 것은 흥미롭다! 데이터들이 바다 밑에 놓여있었다는 사실이 변명의 구실이 되서는 안 된다. 이것은 어느 다른 바다도 아니고, 아마도 세계에서 가장 많이 조사된 대양저(seafloor)로 주장될 수 있는 영국해협이다!   

나는 그것이 창조론의 적(enemy)이었던 죽은 데렉 에이저(Derek Ager)가 그의 마지막 책의 서문에서(많은 사람들은 그것을 그의 과학적 유언으로 여기고 있다) 언급했었던 라이엘의 미련이 남아있는 망령과 더 많은 관계가 있다고 믿고 있다. 즉 :

”마치 정치가들이 인간의 역사를 다시 쓰듯, 지질학자들은 지구의 역사를 다시 쓰고 있다. 150년 동안 지질학계는 세뇌되었다고 말해도 좋을 만큼 찰스 라이엘(Charles Lyell)의 점진적 동일과정설(gradualistic uniformitarianism)에 의해 지배되어 왔다. '격변적” 사건들에 관한 그 어떤 제안도 낡아빠지고 비과학적이고 심지어 우스꽝스러운 것으로서 거부되어 왔다”.[14] 

최근 유럽의 빙하 홍수(glacial floods) 및 빙저 홍수(subglacial floods)들을 늦게나마 인정하게 된 또 다른 이유가 있을 수 있는데, 그것은 산(mountains)들 때문이다. 북미 대륙(대부분의 빙하 홍수 및 빙저 홍수들이 기록되어져  왔던)에는 산맥들은 남-북, 또는 북동-남서 방향으로 주행하고 있고, 대륙의 가장자리에 위치하고 있다. 그래서 북극으로부터 남쪽으로 발달했던 빙상(ice sheet)이나, 빙하기가 끝났을 무렵에 만들어졌던 융수에 대한 거대한 산들의 장벽이 없었다. 한편 유럽에서는(이곳 또한 빙상이 북쪽에서 발달되었다) 피레네 (Pyrenees), 알프스(Alps), 타트라(Tatras), 카르파티아(Carpathians) 산맥 등이 대서양으로부터 흑해로 거대한 동-서 장벽을 조성했다.(이 산맥들은 코카서스(Caucasus), 카라코룸(Karakorum), 그리고 히말라야(Himalayas) 저 너머로 이어진다). 이 장벽들은 빙하들의 진행을 효과적으로 멈추게 했고, 그것 뒤에 융수가 축적되었을 때, 그것의 대부분은 장벽의 서쪽과 동쪽 끝을 향해 진행하게 했을 것이다. 그러므로 북해 홍수는 단지 국부적인 융수보다 더 많은 것에 의해서 공급되었을 가능성이 있다. 성경적인 시간틀 안에서 이 모든 격변적 홍수들은 서로 밀접하게 일어났고, 지구의 기후에 대한 그들의 누적효과는 극적이었을 것이다.


또 다른 흥미로운 가능성이 있다: 즉 흑해 홍수(Black Sea flood)는 지중해(Mediterranean Sea) 바닷물의 침범(이 격변적 사건의 지지자들이 믿고 있는 바와 같이[15])에 의한 것이 아니라, 융수가 동쪽으로 달리다가, 우크라이나 대초원(Ukrainian steppe)을 건너 남쪽으로, 그리고 흑해로 흐르면서 일어났을 가능성이 있다는 것이다. 이것은 흑해를 동쪽으로 범람시켜, 보스포루스(Bosporus) 해협을 자르거나 깊이 파버렸을 수 있다. 아마도 카스피해(Caspian seas)와 아랄해(Aral seas)도 이런 식으로 형성되었을 것이다. 누구도 아직 동부 유럽에서 빙하 홍수 또는 빙저 홍수에 대한 그러한 흔적들을 조사해 본 적이 없었지만, 이러한 신-격변론적 접근의 놀랄만한 추진이 시동된다면, 이제 언제라도 수많은 연구들이 수행될지 모른다!


결론

분명한 것은, 진화론적 지질학에서도 격변적 사건들을 지사학(geological history) 내에 수용하려는 움직임이 증가하고 있다는 것이다. (Ager는 그 격변들을 ‘극히 드문 사건(the rare event)’이라고 부른다). 그러나 이 격변들은 광대한 시간 속에서 각각 분리되어 일어났던 사건들이라는 생각이 견고한 성처럼 자리잡고 있다. 그래서 격변들이 인정될 때에도, 그 사건들은 오랜 지질연대 속에 적합 시켜서, 그들이 필요로 하는 장구한 시간 틀을 유지할 수 있는 것이다. (‘반응강화 증후군(reinforcement syndrome)’). 

이 모든 홍수들은 제4기 빙하기(Quaternary Ice Age)의 결과였다. 창조론자들은 그것에 대한 설득력 있고 유일한 설명을 가지고 있다. 빙하기는 창세기 대홍수(Genesis Flood)에 뒤이어 발생되었고, 대홍수의 귀결이었다. 더구나 홍수 후 빙하기는 유일한 것이었다. (몇몇 진화론자들은 우리가 빙하기라고 부르는 기간 동안에 40회 정도까지의 빙하기들이 있었다고 주장하고 있다).[16] 

성경적 시간 틀 안에서 이 모든 격변적인 홍수들은 서로 가까운 시점들에 일어났고, 전 지구적 기후에 대한 그들의 누적효과는 매우 드라마틱했을 것이다. 지중해나 흑해, 그리고 홍해(Red Sea)와 같은 한 쪽이 폐쇄된 바다들은 '범람”했거나 반복적으로 범람될 수 있었을 것이다. 

현존하는 기후 모델들에 따르면[13], 담수(freshwater)의 그런 유입은 전 지구적인 중대한 냉각을 야기하게 되었을 것이고, 그것은 빙하기 말에 Younger Dryas 소한랭기[13, 17]가 아마도 전 지구적 규모로 엄습했었던 것처럼 보이는 것과 정확히 일치한다.[18]. 또 다른 결과는 해수면의 급격한 상승으로 인해서, 그 전에는 서로 연결되어 있던 섬들이 빠르게 분리되었을 것이라는 것이다. 인류와 동물들은 갑자기 고립되었고, 오늘날의 인구학과 생물지리학의 발달을 허락하였다. 


이들 노아홍수 이후에 뒤따른 홍수(post-diluvial floods)들에 대한 복합적 결과들을 연구하는 것은 노아 홍수의 역동성과 영향들로부터 바벨탑 사건 이후 인류의 분산에 이르기까지 지구 역사의 여러 국면들과 관련된 유용한 정보들을 제공할 수 있다. 우리 모두는 하나님 나라의 확장을 위해서 이와 같은 사실들을 연구하고 사용할 필요가 있다. 자원하는 마음과 연구 자금이 필요한 것의 전부이다! 


Related articles

Iceland’s recent ‘mega-flood’
The story that won’t be told
Mammoth—riddle of the Ice Age
Only one Lake Missoula Flood


References
1. Gibbard, P., Europe cut adrift, Nature 448:259–260, 19 July 2007.
2. Gupta, S., Collier, J.S., Palmer-Felgate, A., Potter, G., Catastrophic flooding origin of self valley systems in the English Channel, Nature 448:342–346, 19 July 2007.
3. Batten, D., et al. What about the Ice Age? www.creationontheweb.com/images/pdfs/cabook/chapter16.pdf 
4. Bretz, J.H., The Spokane Flood beyond the Channelled Scablands, Journal of Geology 33:97–115, 236–259, 1925.
5. Oard, M.J., Only one Lake Missoula flood, Journal of Creation 14(2):14–17, 2000; www.creationontheweb.com/content/view/5066/ 
6. Broecker, W.S., Kennett, J.P., Flower, B.P., Teller, J.T., Trumbore, S., Bonani, G. and Wolfli, W., Routing of metlwater from Laurentide Ice Sheet during the Younger Dryas cold episode, Nature 341:318–321, 28 Sept. 1989.
7. Silvestru, E., Climate change, Niagara and catastrophe; www.creationontheweb.com/content/view/4271
8. Shaw, J., A meltwater model for Laurentide subglacial landscapes; in: Geomorphology sans Frontiere, McCann, S.B. and Ford, D.C., (Eds.), Wiley, Chichester, pp. 182–226, 1969.
9. Shaw, J., The meltwater hypothesis for subglacial bedforms, Quaternary International 90:5–22, 2002.
10. Shaw, J. and Kvill, D., A glaciofluvial origin for drumlins of the Livingstone Lake Area, Saskatchewan, Canadian Journal of Earth Sciences 21:1442–1459, 1984.
11. Shaw, J., Faragini, D., Kvill, D.R. and Rains, R.B., The Athabasca fluting field, Alberta, Canada: Implications for the formation of large-scale fluting (erosional lineations), Quaternary Science Reviews, 19:959–980, 2000.
12. Lewis, A.R., Marchant, D.R., Kowalewski, D.E., Baldwin, S.L. and Webb, L.E., The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean, Geology 34(7):513–516, 2006; su-thermochronology.syr.edu/baldwin/LewisetalLabyrinth.pdf
13. Mechanisms that can cause abrupt climate change, www.ncdc.noaa.gov/paleo/abrupt/story3.html 
14. Ager, D., The New Catastrophism: The importance of the rare event in geological history, Cambridge University Press, Cambridge, p. xi, 1993.
15. Walker, T., The Black Sea flood: Definitely not the Flood of Noah, Journal of Creation 14(1):40–44, 2000; www.creationontheweb.com/content/view/5019/ 
16. Billard, A., Analyse Critique de Stratotyope Quaternaire, Edit, CNRS, Paris, 1987.
17. The Younger Dryas, www.agu.org/revgeophys/mayews01/node6.html 
18. Rutter, N.W., Is the Younger Dryas global in extent? 2003 Seattle Annual Meeting, Paper 132-1, 2003. gsa.confex.com/gsa/2003AM/finalprogram/abstract_63494.htm


번역 - 미디어위원회

링크 - http://creationontheweb.com/content/view/5302/

출처 - Creation, 2007. 9. 5.

미디어위원회
2019-11-13

창세기 홍수의 황금 증거 

: 금(gold)은 노아 홍수 동안에 어떻게 형성되었는가?

(Golden evidence of the Genesis Flood)

Jack Lange


      대부분의 사람들은 물의 작용으로 매끄럽게 마모된 괴금(gold nuggets)들이 강과 시내에서 뿐만 아니라, 언덕이나 심지어 산꼭대기에서도 발견된다는 것을 안다면 놀랄 것이다. 예를 들어, 몇 년 전에 호주 퀸즈랜드 북부의 케이프 요크 반도(Cape York Peninsula)를 답사하는 동안에 나와 동생은 산허리와 심지어 산꼭대기에서 대략 30개의 괴금들을 발견하였다. 이 괴금들은 2g에서부터 30g 이상 나가는 것도 있었는데, 모두 적어도 부분적으로 매끄러웠다. 물의 작용으로 마모된 괴금들은 대리석 크기에서 호박 크기의 부분적으로 매끄러운 암석들과 섞여져 있었다.[1] 많은 광산 시굴자들은 이들 고지대에 있는 괴금들이 어떻게 그렇게 매끄럽게 되었을지 궁금해 하고 있다. 그러나 나에게 그것은 성경에 기록된 전 지구적인 홍수(world-wide Flood)로서 쉽게 설명된다.

.자크 랭(Jack Lange)이 금이 함유되어있는 석영을 들고 있다.


세속적 지질학자들은 금을 함유하는 침전물은 고대 강바닥의 융기에 의해 기인되었다고 설명할 지도 모른다. 그 이론의 문제점은 오늘날 강바닥에서 발견되는 암석과 자갈들은 일반적으로 완전히 매끄럽다는 것이다.

그래서 우리는 ‘고대 강바닥’'이라고 추정되는 곳에서 발견되는 암석들은 매우 매끄러울 것을 예측할 수 있다. 그러나 그러한 암석들의 대부분은 부분적으로 매끄럽고, 부분적으로 물에 의한 마모가 발생되어 있다. 이것은 마치 그것들이 매우 제한된 시간동안만 물에 의해서 굴려져서 이동되었던 것처럼 보인다. 이것은 홍수에 의한 작용(action of the Flood)으로 더 잘 설명된다. 

금(gold)은 모암석이 균열되었을 때 형성된 석영 암맥(quartz veins)에서 발견된다.(아래 글을 보라). 경험 많은 광산 시굴자들은 오늘날 대부분의 금들은 표면에서 이들 금을 함유한 석영 암맥 노두가 있는 곳에서 발견된다는 것을 알고 있다. 사실 내가 발견했던(나는 호주 전역에서 수천의 괴금들을 발견했다) 괴금들은 대부분 처음 발굴되었을 때 석영이 부착되어 있었다. 

홍수 물이 물러감으로서, 광맥들은 타격을 받았고 침식되었다. 그리고 금이 함유된 석영 덩어리들은 부서졌다[2]. 일부 금은 아직도 이들 석영 표본 안쪽에 갇혀져 남아있다. 그리고 그것은 자주 금속탐지기에 의해서 탐지된다.

괴금은 굴러 팽개쳐진 석영으로부터 금이 자유롭게 떨어져 나왔을 때 형성된다. 만약 이 괴금들이 적어도 부분적으로 매끄럽게 되도록 충분히 이동되었다면, 그것들은 사금(alluvial gold)으로 분류된다. 그러나 만약 괴금들이 그들의 광맥 근원 가까이 발견되어 대체로 뾰족하고 모난 형태라면, elluvial gold로 분류된다.

홍수 기간 동안에 자유롭게 분리된 어떠한 괴금도 수개월 동안 물의 흐름에 의해 굴러다녔다면, 매우 매끄럽게 되었을 것이다. 단지 경계의 약간만 매끄러운 괴금은 홍수의 마지막 단계 동안에 분리되어 나왔거나, 홍수 이후 표면 퇴적물의 이동에 의해서 굴려졌던 것일 것이다. 

성경적 홍수에 대한 나의 이해와 어떻게 홍수의 대대적인 힘이 괴금들을 그들의 광맥 근원으로부터 널리 흩뿌렸는지에 대한 일반적인 생각과 다른 나의 생각은 나를 성공적인 시굴자로 만드는 데에 도움을 주었다. 고대의 장소들로부터 하나의 매끄러운 괴금을 파내는 것과 그 역사를 숙고하는 일은 매혹적인 경험이다.



금(gold)은 노아 홍수 동안에 어떻게 형성되었는가?

by Tas Walker


금(gold)은 노아 홍수 이전부터 알려져 있었다. 성경은 ‘금이 있는’ 장소로서 하윌라 땅을 묘사하고 있었다. 그 땅의 금은 정금이었다(창 2:11-12). 창조 주간 동안에 만들어진 금의 대부분은 아마도 노아 홍수 동안에 파묻혀버렸을 것이다.

금은 또한 노아의 홍수 동안에 형성되었다.

1. 노아 홍수 전반기에, 홍수 물은 땅에 뒤덮었고, 두터운 침전물의 층들을 퇴적시켰다. 퇴적층 내에 갇혀서 아직 남아있던 물은 압력 하에 있었고, 강한 활성의 화학물질들과 용해된 광물질들을 포함하고 있었다.

2. 홍수 동안의 거대한 지각 운동은 자주 변성암들을 만들면서 퇴적층들을 습곡시켰다.

3. 물은 암석의 균열 틈을 따라 압착되어 짜여져 나오면서, 석영과 다른 광물(가령 금, 은, 구리, 아연, 납 등)들을 퇴적시켰다. 이들 광물이 풍부한 석영 암맥(mineral-rich quartz veins)은 '광맥(reefs)'이라고 불려진다.

4. 홍수 후반기에, 물러가는 홍수 물들을 땅을 침식시켰다. 광맥들로부터 금은 충적층(alluvial deposits, 진화론적 연대로 신생대 제4기 충적세에 퇴적된 지층)에 집중되었다.


References
1. See Hergenrather, H., Noah’s long distance travelers, Creation 28(3):30–32, 2006.
2. Lalomov, A.V. and Tabolitch, S.E., Gold placers in Earth history, Journal of Creation 12(3):46–47, 1997.

 

번역 - 미디어위원회

링크 - https://creation.com/golden-evidence-of-the-genesis-flood

출처 - Creation 29(4):16–17, September 2007.

미디어위원회
2019-11-13

3일 만에 생겨난 텍사스 주의 캐년 레이크 협곡 

(Texas Canyon Was a Geological Rush Job)

AiG News


      세속적 과학자들도 텍사스 주의 약 2.4km 길이(최고 24m 깊이)의 캐년 레이크 협곡(Canyon Lake Gorge)이 생겨나는 데에 수백만 년이 걸리지 않았다는 것에 동의하고 있다. 그 협곡은 2002년 7월에 단지 3일 만에 파여졌다. (Oct 8. 2007, NBC News)    

5년 전 텍사스 주 캐년 레이크의 방수로가 넘쳐흘렀을 때, 격렬한 급류는 단지 3일 만에 암석 지층들을 관통하여 잘라내었고, 아리조나 주에 있는 그랜드 캐년(Grand Canyon)의 축소판처럼 보이는 캐년을 만들어내었다.  

 

물은 암석층들, 화석들, 심지어 공룡발자국들을 노출시키도록 깊이 파내었는데, 그 협곡을 많은 시간 조사했던 뉴 올리언스 대학의 은퇴한 지질학 교수인 빌 워드(Bill Ward)는 ”그곳에는 풀잎이나, 조류(algae)의 층은 없었다”고 논평하였다.  


협곡보존 협회의 공식 웹사이트는 당시 홍수물의 최대 흐름은 초당 67,000 입방피트(1,897입방미터)로서 보통 때의 거의 200배의 흐름이었다. (당신은 그 사이트에서 협곡의 항공사진을 볼 수 있다).

더군다나 아이오와 시(Iowa City) 북쪽에 데보니안 화석 협곡(Devonian Fossil Gorge)과 같은 다른 지질학적 구조들도 비슷하게 짧은 순간의 홍수 물에 의해서 형성되었다. 그러나 캐년 레이크 협곡에 대한 AP 통신의 이야기는 다음과 같이 대담하게 설명하고 있었다 :

"이 협곡을 세계에서 가장 유명한 그랜드 캐년(Grand Canyon)과 비교할 수는 없다. 그랜드 캐년은 대략 500-600만년 동안에 걸쳐 물들이 파놓았는데, 가장 깊은 곳은 1.8km(6,000피트)나 되고, 폭이 가장 넓은 곳은 24km(15마일)나 된다.”    

깊은 협곡들이 홍수 물에 의해서 단지 몇 일만에 생겨날 수 있다는 직접적인 증거를 눈앞에 두고도, 왜 세속적 과학자들은 다른 협곡들은 수백만 년에 걸쳐서 형성되었다고 주장하고 있는 것일까? 수백만 년이라는 세월은 아무도 관측하지 못한 것이 아닌가? 물론 이들 동일과정설적 해석은 ‘지질주상도(geologic column)‘를 유지하는 데에 긴요한 것이다. 그리고 화석 기록에 대해 장구한 세월을 부여하는 것은 진화론이 이치에 맞게 되는 데에 절대적으로 필요하기 때문이다. 


그렇지만, 세속적 과학자들도 전 세계의 지질학적 모습들이 빠르게 형성되었다는 수많은 증거들을 부정할 수는 없는 것이다. 특별히 그 증거가 바로 눈앞에서 발생했을 때 말이다! 작은 지역에서 단지 한 번의 넘쳐흐른 물이 2.4km 길이, 24m 깊이의 협곡을 3일 만에 만들어낼 수 있었다면, 일 년 이상 지속된 전 세계적인 홍수와 그 물의 후퇴가 얼마나 엄청난 지질학적 대파괴(geological havoc)를 일으켰을 것인지를 상상해보라!       

 

*참조 : Rapid Erosion at Mount St. Helens
http://www.icr.org/research/index/researchp_sa_r04/


번역 - 미디어위원회

링크 - https://answersingenesis.org/geology/natural-features/texas-miniature-grand-canyon/

출처 - AiG, News to Note, 2007. 10. 13.



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광