흰개미의 둥지에서 보여지는 놀라운 설계
(Termite Nest Architectural Design Is Clearly Seen)
Frank Sherwin
흰개미(termites, order Isoptera)는 진화된 사회 조직을 갖고 있는, 진(眞)사회성 동물(eusocial—animals)로 말해진다. 생물학자들은 그들을 하나의 슈퍼 생물(super organism)이라고 부르고 있다. 왜냐하면 그들은 수십만 마리의 집단이 하나의 생물처럼 움직이고 있기 때문이다. 이 곤충은 소화관 내에 공생하고 있는 편모충(flagellates)으로 인해, 나무(wood)를 소화할 수 있는 능력을 갖고 있다. 편모충은 셀룰로오스를 분해할 수 있는 효소를 갖고 있는 단세포 진핵생물이다.
창조론자들은 흰개미는 항상 흰개미였다고 말한다. 화석기록을 보면 흰개미들은 진화론자들이 '2억5천1백만 년' 전이라고 말하는 퇴적지층에서 발견되고 있다.[1] 그러나 그들은 오늘날에도 여전히 흰개미로 살아가고 있다. 다른 진화론자는 3억5천9백만 년 전쯤에 석탄기에서 기원했다고 말한다. 그러나 그들의 주장과 관계없이, 어떠한 공통조상도 발견되지 않았다.
창조론자들은 흰개미는 항상 흰개미였다고 말한다.
미국에서 흰개미는 집들의 기초에 작은 둥지를 만드는 반면에, 호주와 서아프리카에 사는 다른 흰개미들은 흙으로 거대한 둔덕(mounds, termitaria)을 만든다. 그들은 타액, 배설물, 토양을 사용하여, 온도 및 수분이 조절되는, 마치 도시와 같은, 집단이 살아가기 위한 놀라운 구조물을 건설한다. '엔지니어링', '메커니즘', '설계'와 같은 단어들은 흰개미의 둥지를 설명하는 글들에서 지속적으로 사용되고 있다.
예를 들어, 수십만 마리의 흰개미들이 작은 공간에 밀집되어 살게 되면 CO2 농도가 증가하게 된다. 게다가 기르는 곰팡이로 인해 발생하는 CO2도 추가된다.[2] 이 가스의 축적은 환기를 통해 외부로 배출되지 않는 한, 유독할 수 있다. 또한 열을 차단할 수 있는 단열 조절이 되어야 한다. 그러한 조절은 어떻게 이루어지는 것일까? 물론 좋은 엔지니어링과 설계 때문이다.
대기와 CO2는 둔덕의 외벽에 나있는 수천 개의 밀리미터 크기의 외부 '창문(windows)'들을 통해 교환된다. 흰개미들은 바깥의 바람과 둥지 내의 축적된 CO2 농도에 따라, 이 작은 창문들을 자주 열고 닫을 수 있는 능력으로 설계되어있다. 그러나 흰개미들이 임으로 창문을 열고 닫는 것은 비생산적이며, 위험할 수도 있다. 수많은 흰개미들이 모두 하나의 단위처럼 움직여야 한다. 마치 거대한 하나의 생물처럼 말이다. 이러한 환경에 대비하는 집단적 행동이 무작위적 과정으로 우연히 생겨났을까? 아니면 계획과 목적에 의해 생겨났을까?
이 글에서 저자들은 두 종류의 흰개미 둥지 중 하나에 대해 다음과 같이 질문하고 있었다 :
바깥쪽 벽면이 다공성이라면, 기공(pores)들은 연결되어 있는 것일까? 그리고 투과성일까? 그렇다면 그것들은 공기 순환이나 환기에 어떻게 기여하는 것일까? 또한, 벽의 다공성 구조가 어떻게 보온과 둥지의 구조적 안정성을 제공하는 것일까?[2]
이러한 질문은 공학자들이 하고 있는 질문이며, 그에 대한 대답도 공학에 기초한 것이다 :
미세 크기의 많은 구멍들의 커다란 연결망은 단지 하나의 작은 구멍과 비교하여, 수십에서 수백 배로 투과율을 증가시킬 수 있다. 그리고 그 구조는 CO2의 확산을 8배 이상 증가시킨다. 또한 기공 연결망은 보온성을 강화하고, 빗물을 신속하게 배출시킬 수 있어서, 둥지가 젖었을 때 환기를 복원하고, 구조적 안정성을 제공한다.[2]
세속적 과학자들은 흰개미의 둥지에서 명백한 설계를 보고 있었다. 그들은 흰개미 둥지에서 발견되는 구조적 안전성, 환기 조절, 온도 조절에 대한 답을 얻어서, 그 지식을 건축물의 설계에 적용하려고 하고 있었다 :
흰개미의 둔덕은 변화하는 내부 및 외부 환경에 반응할 수 있는, 자가 조절되는 생활환경을 제공한다. 공학자와 곤충학자들로 이루어진 연구팀은 흰개미의 둔덕에서 발견되는 원리를 모방하여, 기계적 설비(예로 난방 및 환기 설비)가 거의 또는 전혀 없는 건물을 설계하고, 기존의 구조보다 적은 에너지 및 다른 자원을 사용할 수 있는지 여부를 연구하고 있다.[3]
우연과 장구한 시간에 기초한 진화론적 설명은 흰개미의 이러한 공학적 구조물에 대한 적절한 설명이 될 수 없어 보인다. 이러한 정교하고 매우 성공적인 흰개미의 둥지에서 볼 수 있는 놀라운 설계는 창조를 가리키는 것이다.(로마서 1:20)
References
1. Weesner, F. M. 1960. Evolution and Biology of the Termites. Annual Review of Entomology. 5 (1): 153-170.
2. Singh, K. et al. 2019. The architectural design of smart ventilation and drainage systems in termite nests. Science Advances. 5(3): eaat8520.
3. Termites could hold the key to self-sufficient buildings. Eurekalert. Posted on eurekalert.org September 21, 2004, accessed March 27, 2019.
*Mr. Sherwin is Research Associate at ICR. He has a master’s in zoology from the University of Northern Colorado.
*관련기사 : 개미·벌·물고기의 ‘떼지능’이 미래 세상 바꾼다 (2013. 05. 19. 중앙선데이)
https://www.joongang.co.kr/article/11554505#home
건축가이자 환경 지킴이인 ‘흰개미’ (2015. 2. 27. Sciencetimes)
흰개미에서 발견한 장수의 비밀 (2018. 5. 9. Sciencetimes)
출처 : ICR, 2019. 4. 4.
URL : https://www.icr.org/article/11266/
번역자 : 미디어위원회
불가능해 보이는 일들을 수행하는 생물들
: 소금쟁이를 모방한 생체모방공학
(Nature’s creatures do ‘impossible’ things)
David Catchpoole
몇 년 전부터 생체모방공학(biomimetics, 생물의 설계를 모방하는 공학)의 영역이 매우 넓어지고 있다. 하나님의 창조물로부터 영감을 받은 새로운 설계와 시스템이 적용된 로봇과 무인항공기들의 숫자가 증가하고 있는 것이다.[1] 카네기 멜론(Carnegie Mellon) 대학의 나노로봇공학 실험실을 이끌고 있는 메틴 시티(Metin Sitti) 조교수는 2006년에 ”자연에는 불가능해 보이는 일들을 해내는 생물들이 굉장히 많다. 이 보다 더 좋은 영감의 원천은 없다”고 말했다.[2]
물론 공개적으로 하나님을 신뢰함으로 생체모방 기술의 발전이 이루어졌다고 말하는 사람은 찾아보기 힘들다. 오히려 자연의 놀라운 진화를 칭송할 뿐이다. 성경은 ”...나 여호와가 하늘과 땅과 바다와 그 가운데 모든 것을 만들고...”(출 20:11)라고 말씀하고 있다. 오늘날 생물에서 보여지는 경이로운 설계들을 창조주에 의한 원래의 창조로 보지 않고, 무작위적인 자연적 과정에 의해 ‘진화’한 것이라고 말하는 잘못된 편견이 만연해 있다. 그러나 생물들은 의도적이고 지적으로 설계되었다고 제안할 많은 이유들이 있다. 특히 매우 뛰어난 연구자들로 구성된 연구팀이 모방한 설계라도, 여러 면에서 원작의 우수성에 미치지 못하는 것을 생각할 때, 더욱 그렇다. (심지어 공학자들이 복제하기 원하는 단 한 가지 특성에 대해서도 마찬가지이다.)
”자연에는 불가능해 보이는 일들을 해내는 생물들이 굉장히 많다. 이 보다 더 좋은 영감의 원천은 없다” - 카네기 멜론 대학, 나노로봇공학 연구소 소장, 메틴 시티(Metin Sitti)
좋은 예로서 소금쟁이(water strider)가 있다. 2005년에 로봇 공학자들은 소금쟁이가 물의 표면장력을 이용하여 물위를 스케이트 타듯 다니는 능력을 모방한 최초의 로봇을 제작했다고 발표했다.[3] (표면장력은 물방울이 구슬처럼 튀는 현상과 같은 것이다.)
물 위를 미끄러져가는 수상스케이팅 로봇(water-skating robot)은 상당한 성과를 거두었지만, 소금쟁이는 여전히 공학자들을 앞서고 있었다. 그들은 소금쟁이가 마치 단단한 땅에서 점프하듯이, 어떻게 수면에서 점프할 수 있는지를 설명할 수 없었다. 예를 들면, 한국에서 살아가는 길이 1.3cm인 소금쟁이는 자신의 길이의 6배가 넘는 8cm 이상을 점프할 수 있다.
10년의 연구 끝에 소금쟁이의 도약력을 모방한 연구진은 인상적인 발전을 이루어냈다. 고속촬영 장비를 비롯한, 여러 첨단 기술의 장비들을 사용하여, 연구자들은 소금쟁이 다리의 움직임이 물의 표면장력이 끊어지지 않을 정도로 점진적으로 가속화되는 것을 관찰했다. 그들은 소금쟁이의 다리가 가하고 있는 최대 힘이 물의 표면장력 반대쪽에 수직으로 작용하지만, 결코 표면장력을 초과하지는 않는다는 것을 발견했다. 그렇기에 다리가 가라앉지 않는 것이다. 또한 소금쟁이가 물 표면을 밀 수 있는 시간을 벌기 위해, 다리를 안쪽으로 쓸어 올린다는 것을 발견했다. 더구나 소금쟁이의 다리 끝부분은 물 표면에 형성되는 작은 굴곡에 적응하기 위해 완벽한 형태로 구부러져 있어서, 다리에 닿는 물의 표면장력을 최대한으로 이용할 수 있었다.
공학자들은 새로운 지식으로 무장하여, 경량 로봇을 만들었다. 이 로봇은 자신의 높이 만큼인 14cm를 수면에서 뛰어오를 수 있었다. (소금쟁이보다 조금 무거운 0.068g, 높이 1㎝의 이 로봇은 5㎝짜리 다리 4개로 물 위에서 최대 14㎝ 높이까지 뛰어올랐다). 소금쟁이처럼, 이 로봇은 땅에서 점프하듯이 수면에서 점프할 수 있었지만, 딱 한번만 점프가 가능하다는 점이 다르다. ”살아있는 소금쟁이와는 달리, 이 1세대 소금쟁이 로봇은 도약한 후에, 다시 떨어져서는 일어설 수 없다.”[6]
'자연의 생물'들은 자연적으로 발생하지 않고, 초자연적으로 나타났다.
궁극적으로 연구자들은 랜딩(착륙)을 조절할 수 있거나, 여러 번 점프를 할 수 있는, 또한 필요한 전자장비(예로 배터리나 센서)를 운반할 수 있는 로봇을 제작하는 것이 목표이다. 이러한 로봇은 감시, 수색, 구조작업, 환경 모니터링에 유용하게 쓰일 것으로 예상된다.
그런데 로봇의 점프 메커니즘은 소금쟁이가 아니라, 벼룩(flea)의 것을 모방한 것이다. 즉 최소 두 생물로부터 영감을 받아, 그 로봇이 제작되었다는 것이다. 연구책임자인 서울대학교 기계항공공학부의 조규진 교수는 ”자연의 생물들은 공학자들에게 많은 영감을 준다”고 말했다.[7]
그 ”자연의 생물”들은 원래 자연적으로 생겨난 것이 아니라, 우리 사람처럼 초자연적으로 생겨났다. 그러나 사람은 중요한 차이점을 가지고 있다. 소금쟁이와 벼룩과는 달리 우리는 창조주의 형상대로 창조되었다.(창세기 1:26~27) 그래서 모든 생물들 중에서 오직 사람만이 하나님이 만드신 것을 모방하고, 연구할 수 있는 능력을 갖고 있는 것이다. 그리고 사람이 만든 것들 중 하나가 하나님이 손수 만드신 것과 어느 정도 일치하는 부분이 있더라도, 그러한 설계를 누가 먼저 생각하셨는지를 결코 잊어서는 안 된다.
Further Reading
In leaps and bounds
Brilliant engineering: the weevil ‘hip’-and-leg joint
Toothed gears in jumping insects
Walking up walls
Gecko foot design—could it lead to a real ‘spiderman’?
Desert creatures inspire ‘SandBot’
Submarines with fish fins?
‘Primitive’ cell inspires advanced robot mini-sub
References and notes
1. E.g. see creation.com/biomimetics and creation.com/burgess.
2. Quoted in ‘Mech Nuggets’, Carnegie mech—carnegie mellon 10(1):17, Fall 2006; me.cmu.edu.
3. Suhr, S., Song, Y., Lee, S., and Sitti, M., Biologically inspired water strider robot, Robotics: Science and systems, MIT, Boston, June 2005, nanolab.me.cmu.edu.
4. Vella, D., Two leaps forward for robot locomotion, Science 349(6247):472–473, 2015; doi:10.1126/science.aac7882.
5. Koh, J., Yang, E., Jung, G., Jung, S., Son, J., Lee, S., Jablonski, P., Wood, R., Kim, H., Cho, K., Jumping on water: Surface tension-dominated jumping of water striders and robotic insects, Science 349(6247):517–521, 2015; doi:10.1126/science.aab1637.
6. Schwartz, S., Robot springs off water: Inspired by water striders, lightweight bots take advantage of surface tension to leap, sciencenews.org, 30 July 2015.
7. Choi, C., Bug Bots! These insect-inspired robots can jump on water,livescience.com, 3 August 2015.
*관련기사 : 서울대, 물에서 뛰는 '소금쟁이 로봇' 개발 (2015. 7. 30. 로봇신문)
http://www.irobotnews.com/news/articleView.html?idxno=5397
자기 몸 14배 높이 점프하는 ‘소금쟁이 로봇’ 첫 개발 (2015. 7. 31. 한겨레)
http://www.hani.co.kr/arti/science/science_general/702606.html
박쥐 드론, 소금쟁이 로봇…'생물, 로봇이 되다' (2017. 2. 11. 연합뉴스)
https://www.yna.co.kr/view/AKR20170211040500017
독일, 다양한 동작 가능한 소형 소프트 로봇 개발 (2018. 1. 25. 로봇신문)
http://www.irobotnews.com/news/articlePrint.html?idxno=12933
출처 : Creation 39(3):12–13—July 2017
URL : https://creation.com/water-strider
번역자 : 미디어위원회
딱정벌레에서 발견된 기어는 설계를 외치고 있다.
(Beetle Mouth-Gears Shout Design)
Frank Sherwin
딱정벌레(beetles, order Coleoptera, 딱정벌레목)는 몸을 덮고 있는 눈에 띠는 한 쌍의 반짝이는 앞날개를 갖고 있는, 독특하면서도 흔한 곤충 집단이다. 이 보호용 겉날개(wing case)는 시초(翅鞘, elytra)라 불려진다. 딱정벌레는 하나님의 창조물인 곤충(insects)의 거의 40%를 구성하고 있다. 모든 동물학자들이 하고 있는 일을 중단하고 단지 딱정벌레목(Coleoptera)만 연구하더라도, 다음 세기까지 바쁠 것이다.
딱정벌레 연구는 계속해서 놀라움을 주고 있다. 최근 일본 생물학자들은 장수풍뎅이(투구풍뎅이, horned beetle, subfamily Dynastinae, AKA, Rhinoceros beetle)의 큰턱(mandibles, mouth pincers, 입 집게발) 내에서 놀라운 구조를 발견했다. 곤충에서 완전히 '동시적 운동(synchronous movements)'으로 작동되는, 복잡한 기어와 같은 구조(gear-like structures)를 갖고 있음이 발견된 것이다.[1] 도쿄대학 농업기술학부의 곤충학자들은 다음과 같이 보고하고 있었다 :
면밀한 조사 결과, 각 큰턱(mandible)에는 2개의 기어 이빨(gear teeth)과, 두 세트의 기어 맞물림(mesh) 구조가 있음이 밝혀졌다. 결과적으로 하나의 큰턱이 움직일 때, 다른 것도 움직인다.[2]
2013년에 New Scientist 지는 곤충 유충에서 예상치 못했던 기계류를 보고했었다.
곤충인 멸구(Issus coleoptratus)는 예상치 못한 기계류가 몸 안에 숨겨져 있는 또 하나의 동물이다. 멸구 유충은 자동차의 기어 박스처럼, 맞물려진 기어(interlocking gears)를 갖고 있는 것으로 알려진 최초의 동물이다.[3]
이러한 복잡한 운동과 기아 이빨(gear teeth)들이 오랜 시간만 주어진다면, 목적도 없고, 계획도 없는, 무작위적인 과정에 의해서 우연히 생겨날 수 있을까? 진화론자들은 이러한 기어도 설계된 것이 아니고, 어떻게든 천천히 하나씩 하나씩 점진적으로 생겨났다고 설명한다. 그러나 한 진화론 기사가 보도하고 있는 것처럼, ”기어는 쉽게 부러질 수 있으며, 하나의 톱니가 벗겨진다면, 그 메커니즘은 즉시 작동되지 않을 것이다.”[3] 그렇다면, 어떻게 무작위적인 메커니즘으로 톱니들이 하나씩 하나씩 생겨나, 그러한 맞물린 기어 구조가 생겨날 수 있었단 말인가? 부품들이 결여된 자동차의 기어 박스는 확실히 작동되지 않을 것이며, 생물에서도 무작위적인 과정으로 어쩌다 하나씩 생겨난 부품들로 된 기어는 작동되지 않을 것이고, 작동되지 않는 기관은 빠르게 제거될 것이다.
장수풍뎅이의 입 기어의 동시적 운동은 계획, 목적, 그리고 설계를 외치고 있는 것이다!
References
1. Ichiishi, W. et al. 2019. Completely engaged three-dimensional mandibular gear-like structures in the adult horned beetles reconsideration of bark-carving behaviors (Coleoptera, Scarabaeidae, Dynastinae). ZooKeys. 813: 89-110.
2. Marshall, M. 2019. Rhinoceros beetles have weird mouth gears that help them chew. New Scientist. Daily News.
3. Marshall, M. 2013. Zoologger: Transformer insect has gears in its legs. New Scientist. Posted on newscientist.com on September 12, 2013, accessed on February 12, 2019.
*Mr. Sherwin is Research Associate is at ICR. He earned his master’s in zoology from the University of Northern Colorado.
번역 - 미디어위원회
링크 - https://www.icr.org/article/beetle-mouth-gears-shout-design/
출처 - ICR, 2019. 3. 12.
도마뱀붙이 머리에 있는 구멍의 비밀
(Geckos Have Holes in Their Heads)
Frank Sherwin
사랑스럽고 설계된 모습의 도마뱀붙이(gecko)은 올해도 새로운 소식을 전해주고 있었다.[1] 도마뱀붙이는 경이로운 야행성 시각을 갖고 있음이 2009년에 발견됐었다.[2] 또한 복잡한 막 분자인 인지질을 분비하는 접착성을 갖는 정교한 발바닥도 창조의 경이로움이다.[3]
도마뱀붙이와 같은 작은 동물에서 소리의 방향을 찾아내는 일은 쉬운 일이 아니다. 그러나 이것도 창조주의 독창적인 설계에 의해서 해결되고 있었다. 큰 생물에서, 소음의 위치는 삼각측량(triangulation)이라 불리는 방법에 의해서 해결된다. 그것은 알려진 지점으로부터 각도를 측정하고, 고정된 기준선에 대해 다른 것의 위치를 사용함으로써, 어떤 것의 위치를 결정하는 방법이다. 사람의 경우, 각 귀의 귓바퀴(외이)는 소리를 스테레오로 듣기 위해 설계되어 있다. 이것은 우리의 뇌가 삼각측량을 할 수 있게 하여, 소리가 어디에서 오는지 식별하게 한다. 그러나
도마뱀붙이와 다른 많은 동물들은 머리가 너무 작아서, 넓은 간격을 가진 우리의 귀가 하는 것처럼, 소리의 위치를 삼각형화 할 수 없다. 대신에 그들은 그들의 머리를 통과하는 작은 터널을 가지고 있다. 이 터널로 들어오는 음파가 반사되면서 소리가 어느 방향에서 왔는지를 알아낸다.[1]
이 매혹적인 생물은 하나의 고막(eardrum)으로 설계되어 있는 것이 발견되었다.
... 본질적으로 다른 쪽에서 터널을 지나는 음파에너지의 일부를 훔친다. 이것(간섭)은 도마뱀붙이에게(그리고 비슷한 터널을 가진 약 15,000 종의 다른 동물들도) 소리가 어디에서 왔는지를 인식하는 것을 도와준다.[1]
창조된 도마뱀붙이와 같은 작은 규모의 정교한 방향 탐지 청력에 관한 내용은, Nature Nanotechnology(2018. 10. 29) 지에 ”작은 동물의 방향성 청력에 의해 영감을 얻은, 서브파장 각도-감지 광검출기(Subwavelength angle-sensing photodetectors)”라는 제목으로 게재되었다.[4] 위스콘신과 스탠포드 대학의 연구자들은 도마뱀붙이의 고막을 모방한 방식으로, 나노 와이어(nanowires, 머리카락의 약 1/1000 정도 굵기)라 불리는 두 개의 작은 실리콘 전선을 일렬로 배치했다. 이 배치를 통해서, 그들은 광검출기 실험 중에 ”들어오는 광파(light waves)의 각도를 매핑”할 수 있었다.[1]
하나님이 당신의 작은 피조물에 장착시켜놓은 놀라운 설계는 이 광탐지기 시스템의 방향과 질로 인해 확증되고 있었다.
연구에 참여한 한 대학원생은 이 광 시스템의 원래 조립은 도마뱀붙이에게서 영감을 받은 것이 아니었다고 말했다. 연구자들은 작업을 시작한 후에, 그들의 설계와 도마뱀붙이의 귀 사이에 유사성이 있음을 알게 되었다. 그러나 그것은 상당한 수준의 유사성이었다 : ”이 광검출기와 도마뱀붙이의 귀를 동일한 수학으로 같이 설명할 수 있었으며, 그것은 서로 밀접하게 배열된 원자들 사이의 간섭현상으로 기술된다.”[1]
하나님이 당신의 작은 피조물에 장착시켜놓은 놀라운 설계는 이 광탐지기 시스템의 방향과 질로 인해 확증되고 있었다.
References
1. Tiny light detectors work like gecko ears. ScienceDaily. Posted on sciencedaily.com October 30, 2018, accessed November 15, 2018.
2. Thomas, B. Gecko Eyes Make Great Night Vision Cameras. Creation Science Update. Posted on ICR.org May 29, 2009, accessed November 15, 2018.
3. Thomas, B.Scientists Discover New Clue to Geckos’ Climbing Ability. Creation Science Update. Posted on ICR.org October 17, 2011, accessed November 15, 2018.
4. Yi, S. et al. 2018. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nature Nanotechnology. 13: 1143-1147.
*Mr. Sherwin is Research Associate is at ICR. He has a master’s in zoology from the University of Northern Colorado.
번역 - 미디어위원회
링크 - https://www.icr.org/article/11107/
출처 - ICR, 2018. 12. 18.
거미줄의 놀라운 설계는 창조를 가리킨다.
(Amazing Design of Black Widow Web Silk)
Frank Sherwin
화석기록에서 입증된 것처럼, 창조의 증거는 거미(spiders)들의 갑작스러운 기원과 놀라운 설계에서 볼 수 있다. 모든 거미들은 4쌍의 다리를 갖고 있다. 거미 화석은 드물다. 전 세계적으로 약 1000종의 화석만이 보고되었다. 그러나 거미들은 언제나 그들의 상징적인 8개의 다리와, 현저하게 복잡한 시각기관을 갖고 있었으며, 창조론자들이 예측하듯이 100% 거미였다. 쥐라기는 대략 1억6천5백만 년 전으로 추정되는 시기이지만. 중국 북부에서 발견된 거미 화석은 그때 이후로 조금도 진화하지 않았다.[3] 이것은 거미가 알려지지 않은 비-거미 조상으로부터 진화하지 않았기 때문이다. 그들은 명백히 조금도 진화하지 않았다.
무척추동물 학자들은 거미줄-섬유의 구조와 거미-실크 단백질을 구성하는 주요 아미노산 배열에 대해 알고 있었지만, 최근 심도 깊은 연구에 의해서, 검은과부거미(black widow spiders, Latrodectus, 검은독거미속)가 어떻게 강철 같은 거미줄을 생산하는지 그 방법이 밝혀졌다.[4] 그것은 절대로 간단한 과정이 아니다.
연구팀은 최첨단 기술을 활용하여, 실크 섬유가 생산되는 단백질들의 샘(gland) 내부를 보다 면밀히 관찰할 수 있었다. 그들은 보다 복잡하고 계층적인 단백질 조립을 발견할 수 있었다.[4]
생물학자들은 거미의 실크 샘에서 ”단백질이 섬유가 되는 저장, 변형, 수송 과정을 결정하기 위해서 나노 수준으로 살펴보았다.”[4] 열쇠는 미셀(micelles)이라 불리는, 매우 작은 단위의 많은 분자들로 이루어져있는 초분자 조립에 있었다. 연구자들은 연구를 시작하면서 미셀이 매우 복잡하고 복합적이라는 것을 발견했다. 이것은 예상됐던 것이 아니었다. 그들은 처음에는 검은과부거미의 특별한 섬유가 무작위적 과정에 기인했다고 생각했다. 대신 그들은 ”거미의 복부에 저장되어 있는 단백질들의 계층적 나노 조립체(직경 200~500 nanometers)를 발견했던 것이다.”
화석기록에서 입증된 것처럼, 창조에 대한 증거는 거미들의 갑작스러운 기원과 놀라운 설계에서 볼 수 있다.
연구자들은 거미가 만들어내는 독특하고 강철 같은 섬유를 복제하기를 원하고 있었다. 그와 같은 강력한 합성물질은 ”군사, 응급처치, 운동선수 등에서 고성능의 섬유로 사용되거나, 건축자재, 교량 케이블, 기타 재료로 사용될 수 있을 것이기 때문이었다. 또한 이 물질은 환경 친화적이어서, 플라스틱을 대체할 수도 있으며, 생의학적 적용도 가능하다.”
창조론자들은 설계된 모습의 거미와 경이로운 복잡성의 거미줄이 우연과 오랜 시간이 아니라, 창조주로부터 기원했다고 믿는다. 무작위적 과정은 얼마나 오랜 시간이 있다하더라도, 그러한 복잡성을 우연히 만들어낼 수 없다.
References
1. Sherwin, F. Spiders Have Always Been Spiders. Creation Science Update. Posted on ICR.org March 19, 2015, accessed November 9, 2018.
2. Thomas, B.Scientists Decode Key to Spider Web Strength. Posted on ICR.org March 19, 2012, accessed December 5, 2018; Thomas, B. The Masterful Design of Spider Webs. Posted on ICR.org March 30, 2012, accessed December 5, 2018; Sherwin, F. Spiral Wonder of the Spider Web. Posted on ICR.org May 1, 2006, accessed December 5, 2018.
3. Ghose, T. Stunningly Preserved 165-Million-Year-Old Spider Fossil Found. Wired. Posted on Wired.com February 9, 2010, accessed November 15, 2018.
4. Mystery of how black widow spiders create steel-strength silk webs further unravelled. ScienceDaily. Posted on ScienceDaily.com October 22, 2018, accessed November 15, 2018.
*Mr. Sherwin is Research Associate is at ICR. He has a master’s in zoology from the University of Northern Colorado. Article posted on December 6, 2018.
*참조 : Molecular Biomechanics: Spider Silk (youtube 동영상)
https://www.youtube.com/watch?v=te606w8nC3M
번역 - 미디어위원회
링크 - https://www.icr.org/article/amazing-design-of-black-widow-web-silk/
출처 - ICR, 2018. 12. 6.
진화론을 부정하는 경이로운 지적설계의 세 사례
: 민들레 씨앗, 사마귀새우, 사람의 뇌
(Three More Designs that Defy Evolution)
David F. Coppedge
자연 속의 경이로운 구조들이 상세히 밝혀질 때마다, 진화론은 점점 더 가능성이 없어 보인다.
민들레 씨앗
Nature(2018. 10. 17) 지의 한 연구에 따르면, 민들레 씨앗(dandelion seed)은 이전에 알려지지 않았던 ”특별한” 비행 기술을 사용하고 있다는 것이다. ”분리된 소용돌이 고리(separated vortex ring)”라 불리는 이 메커니즘은 글자 그대로 씨앗과 관모(낙하산)를 위쪽 공기 중으로 빨아들인다. 제레미 렘(Jeremy Rehm)은 Nature 지에서 이것에 대해 논평하면서, ”이전에 결코 볼 수 없었던 불가능한 방법”이라고 부르고 있었다. 그러나 실제 살아있는 세계에서는 흔히 볼 수 있다. 렘의 글에 있는 동영상, 또는 YouTube에 있는 동영상을 보라. 거기에서 에든버러 대학(University of Edinburgh)의 과학자들은 그것이 어떻게 작동하는지를 보여주고 있었다. ”아마도 언젠가 공학기술은 민들레 씨앗만큼 효율적인 비행을 설계해낼 수 있을 것이다.” 해설자는 이것이 ”완전히 새로운 유형의 비행”이라고 말하고 있었다.
https://www.youtube.com/watch?v=N2UbaDV9O9Q
그 메커니즘은 관모(pappus)라 불리는 낙하산 필라멘트의 정확한 간격, 길이, 질량에 달려 있었다. 놀랍게도 열려진 낙하산은 고체 원반보다 더 많은 항력(drag)을 일으키고, 필라멘트를 통과하는 공기 흐름은 관모 위로 저압력의 소용돌이를 일으키고, 이것은 낙하산을 위쪽으로 빨려들게 하고, 떠오르게 할뿐만 아니라, 동시에 안정적인 자세를 유지할 수 있게 해준다. Nature 지는 말한다 : ”관모의 크기, 모양, 질량, 그리고 결정적으로 다공성(porosity)의 극히 정교한 조합은 이러한 소용돌이 고리를 만들 수 있다.”
*관련기사 : ”민들레 씨앗의 특별한 비행…공기 소용돌이 덕분” (2018. 10. 26. 한겨레)
http://www.hani.co.kr/arti/science/science_general/867573.html하나님은 왜 잡초를 만드셨을까?
사마귀새우
경이로운 사마귀새우(mantis shrimp)에 관한 새로운 소식이 전해졌다. New Scientist(2018. 10. 18) 지에서 레아 크레인(Leah Crane) 기자는, 경이로운 눈을 갖고 있는 사마귀새우가 22구경 탄환처럼 강력한 타격을 가하는 강한 웅크림을 어떻게 할 수 있는지를 말하고 있었다. 앞다리에 커다란 이두근 대신에 ”자연스럽게 달린 스프링이 있어서, 주먹 같은 곤봉(clubs)을 초당 23m의 속도로 휘두를 수 있다”는 것이다.
싱가포르 남양 기술대학교(Nanyang Technological University)의 연구자들은 탄성에너지를 저장하고 있는 앞다리의 안장 모양의 장치를 조사했고, 모양이 변형되었을 때, 어떤 일이 일어나는지를 살펴보았다.
미세레즈(Miserez)와 그의 동료들은 어떻게 사마귀새우의 앞다리가 부러짐 없이, 그러한 에너지를 보유하고 있는지를 정확히 조사하기 위해서, 컴퓨터 모델과 함께 일련의 작은 찌르기들을 사용했다. 그들은 그것이 2층 구조이기 때문에 작동한다는 것을 발견했다. 상단 층은 뼈와 유사한 세라믹 물질로 만들어져 있으며, 바닥 층은 주로 플라스틱과 같은 생체고분자로 만들어져 있었다.
안장이 구부러지면, 상단 층이 압축되고, 하단 층은 늘어난다. 세라믹은 압축될 때 많은 에너지를 저장할 수 있지만, 구부러지거나 늘어날 때 부서지기 쉽다. 생체고분자는 강하고 튼튼해서, 전체 부분을 함께 붙잡고 있다.
곤봉에 장착되어 있는 스프링 장치와 탄력적 재질은 사마귀새우에 강력한 펀치를 날릴 수 있도록 해주고, 이것은 먹이의 단단한 껍질을 부수기에 충분할 것이다. 그리고 그것은 이 동물에 장착되어 있는 ‘한 요소도 제거 불가능한 복잡성(환원불가능한 복잡성)’의 여러 기관들 중 하나일 뿐이다. 사마귀새우는 원형 편광을 감지하고 활용할 수 있는 알려진 유일한 동물이다.(2008. 3. 31). 크레인은 MIT의 과학자들이 사마귀새우의 강력한 타격을 모방하는 것을 고려하고 있다고 언급했다.
*참고자료 : 사마귀새우의 경이로운 눈은 진화론을 거부한다 : 16종류의 광수용체를 가진 초고도 복잡성의 눈이 우연히?
새우중의 권투왕-큰사마귀새우 (youtube 동영상)
https://www.youtube.com/watch?v=NpxLLpbI_6o
사람의 뇌
클레어 윌슨(Clare Wilson)은 New Scientist(2018. 10. 18) 지에서 ”당신의 뇌는 1000억 개의 미니컴퓨터들이 모두 함께 작동되는 것과 같다”고 발표했다. 캠브리지의 매사추세츠 공과대학의 마크 하네트(Mark Harnett)는 간질(epilepsy) 환자에서 수술 도중에 제거됐던, 살아있는 신경세포 내로 미세한 전극을 설치했다. 그가 발견한 것은 놀라웠다.
.인간의 신경세포 (Credit: Illustra Media)
윌슨은 ”초미세 수준에서 인간 세포의 전기 활동에 대한 최초의 기록에 의하면, 우리의 뇌 세포 각각은 하나의 미니컴퓨터처럼 작동할 수 있다”고 말했다. 당신의 두개골 내에 있는 1000억 개의 뉴런들을 생각해 보라 :
각 뉴런은 약 50개의 수상돌기(dendrites)들이 있으며, 각 수상돌기에는 수백 개의 시냅스들이 있어서 다른 뉴런들과 연결되어 있다. 수상돌기 자체가 그 길이를 따라 다소의 신호들을 보내고 있는 것으로 보이며, 이 시냅스들을 가로질러 수상돌기 안으로 신호들이 전달된다.
수상돌기 당 이온 채널의 수는 생쥐보다 인간에서 더 적다. 그러나 이것은 좋은 일이라고 윌슨은 설명한다. 수상돌기 끝에 있는 시냅스에는 상승효과를 위한 더 많은 기회가 주어진다. 따라서 ”수상돌기의 주요 가지들은 신호의 발사 여부에 대한 최종 결정을 집합적으로 결정한다.” 그 일은 당신이 이 기사를 읽는 순간에도 일어나고 있는 일이다.
*참고자료 : 인간 뇌, 슈퍼컴 인공지능 보다 30배 빨라
'AI 임팩트' 프로젝트 연구 결과 발표 (2015. 9. 3. 로봇신문)
http://www.irobotnews.com/news/articleView.html?idxno=5639
다윈의 이론은 점점 설자리를 잃어가고 있다. 이러한 경이로운 구조들이 목표도 없고, 방향도 없고, 계획도 없는, 무작위적인 과정들로 우연히 생겨났는가? 진화론을 믿기 위해서는 엄청난 믿음이 필요하다.
번역 - 미디어위원회
링크 - https://crev.info/2018/10/three-designs-defy-evolution/
출처 - CEH, 2018. 10. 25.
생체모방공학의 최근 소식
: 리그닌, 가오리, 초파리를 모방한 공학기술
David F. Coppedge
자연의 생물들이 어떻게 물질을 다루고 조직하는지를 모방할 수 있다면, 세상은 더 좋고 지속 가능한 곳이 될 것이다.
리그닌으로 생분해성 용기의 제조(Aalto University). 식물의 딱딱한 조직에서 발견되는 리그닌(lignin)은 지구상에서 가장 풍부한 재료이며, 에너지 또한 풍부한 물질 중 하나이다. 그러나 지금까지 과학자들은 생분해성 물질로 활용할 수 없었다. 농부들은 그것을 태우거나 버려버리고 있었으나, 진균류는 그것을 분해하여 생물권 내로 재순환시킬 수 있다. 이제 변화가 일어나고 있다. 핀란드 알토대학(Aalto University) 과학자들은 볼(ball)과 같은 리그닌 입자를 만들었는데, 이것은 ”리그닌(lignin) 활용에 있어서 완전히 새로운 가능성을 열고 있다”는 것이다. 이 생물-영감 연구의 장점은 많은 국가에서 고민하고 있는, 해양 오염의 주요한 오염원인 플라스틱의 양을 획기적으로 줄일 수도 있다는 것이다.
”리그닌을 사용할 수 있는 방법은 거의 무제한이다”라고 보도 자료는 말한다. 리그닌은 코팅, 합판, 생화학물질, 연료, 자동차 및 항공기의 탄소섬유 등에 사용될 수 있으며, 훨씬 많은 분야에서 유해한 화학물질을 대체할 것이다. 그러나 그것의 구조는 복잡하고 복제하기가 어렵다. 대학의 연구자들은 물과 쉽게 혼합될 수 있고, 잠재적으로 다양한 형태로 성형될 수 있는, 리그닌 나노입자를 만드는 방법을 발견했다. 그들은 Nature Communications(2018. 6. 12) 지에 그 결과를 발표했다. 성공적으로 진행된다면, 플라스틱 공해를 줄일 수 있으며, 폐기물을 재활용할 수 있는, '순환 경제'로 발전할 수 있다는 것이다. 이것은 많은 자연 보호론자들이 도달하기 원했던 목표이기도 하다.
*관련보도 : 진화하는 목재의 변신은 무죄 (2018. 3. 18. ScienceTimes)
리그닌 응용 분야 동향 (2016. 8. 17. Bric)
가오리로부터 영감된 프로그래밍 가능한 형태와 동작의 3D 구조(Nature Communications. 2018. 9. 12). 로봇을 부드럽게 만들 수 있을까? 그렇게 될 수 있다는 것이다. 그래서 물고기와 같은 살아있는 생물과 더 가깝게 로봇을 만들 수 있다는 것이다. Nature Communications 지에 게재된 논문에서, 과학자들은 노랑가오리(stingrays)에서 영감을 얻어, ”소프트 로봇공학, 프로그램 가능 물질, 생체모방 제품”을 만들기 위해서 성형 및 작동될 수 있는 하이드로 겔(hydrogels, 부드러운 물질)을 만들고 있었다. 이 논문에서 '진화(evolution)'에 대한 유일한 언급은 다윈주의와는 아무런 관련이 없었으며, 오히려 실험적 설계의 '형태적 진화(발전)'과 관련되어 사용되고 있었다. 실제로 '설계(design)'라는 단어는 논문 전체에 걸쳐 발견되고 있다. 예를 들어 :
이 작업(그림 3, 4)에서 확립된 설계 규칙은 방대한 계산 없이, 복잡한 3D 구조를 구축 할 수 있는 간단하면서도 다양한 방법을 제공한다. 이 능력을 입증하기 위해서, 우리는 K < 0 (그림 4k-n)인 가슴지느러미를 포함하여, 노랑가오리의 주요 형태학적 특성을 복제한, 가오리에서 영감 받은 3D 구조를 제작했다. 우리는 가오리의 3D 이미지, K, 가오리의 수영 동작을 기반으로 한, 다중모듈 구조를 설계했다.(Fig. 4k, l, Supplementary Figure 13). 몸체와 가슴지느러미에 대한 성장 기능은 Figs. 3, 4a–j (Supplementary Note 5)에서 보여지는 설계 규칙을 사용하여, 선형 연결체(Fig. 4l)와 함께 설계되고 병합되었다. 예를 들어, 연결체와 몸체구조 모듈은 신체에 대한 좌우 가슴지느러미의 방향을 제어하여, 운동을 동시에 일어날 수 있도록 하는 전이적 구성 요소로 사용되었다.(Supplementary Figure 14). 또한, 가오리에서 영감을 받은 이 구조는 가오리의 것을 모방하여, 온도 사이클(31.5~33.5°C)에 반응하여, 다양한 유형의 진동 날개짓 운동을 생성하도록 설계되었다.(Supplementary Movies 3, 4).
*관련기사 : 근육, 움직임까지…생체 모방 가오리 바이오 로봇 개발 (2016. 7. 8. KBS News)
https://news.kbs.co.kr/news/view.do?ncd=3308385
광(光) 자극으로 조정하는 ‘가오리 로봇’ (2016. 7. 10. 동아사이언스)
https://www.dongascience.com/news.php?idx=12921
가오리? 뱀?…美 생체모방 수륙양용 로봇 개발 (2019. 1. 7. 나우뉴스)
https://nownews.seoul.co.kr/news/newsView.php?id=20190107601012
참신한 비행 로봇은 빠른 곤충의 비행을 모방했다. (TU Delft and Wageningen University). ”델플라이 님블(Delfly Nimble): 가장 민첩한 파리에서 영감을 얻은 로봇”에 대한 비디오를 보라. 정말 멋지다! 그것은 앞으로도, 옆으로도 날아갈 수 있고, 초파리처럼 공중에서 유턴, 뱅크드 턴(banked turn), 배럴 롤(barrel roll) 등 현란한 비행 동작을 수행할 수 있다. 별도의 날개 구동장치(wing actuators)가 이전의 MAVs(micro air vehicles)보다 더욱 좋은 유연성을 제공하고 있었다. 그 로봇은 빠르게 가속할 수 있고, 공중정지 비행을 할 수 있다. 델플라이 님블은 새로운 응용 분야를 열고 있으며, 초파리(로봇보다 55배나 작음)가 어떻게 그러한 곡예비행을 수행하는지를 이해하는 데에 도움이 될 것이었다.
동물들의 비행은 복잡한 날개의 운동패턴과 항공역학을 연구하는, 그리고 그러한 민첩한 비행 도중의 감각 및 신경-모터 시스템을 연구하는 생물학자들의 관심을 끌어왔다. 최근 비행 동물은 또한 민첩하고, 전력 효율적이며, 곤충 크기로 축소 가능한, 경량 비행 로봇을 개발하려는 로봇 연구자에게 영감의 원천이 되어왔다.
그림 1. Science(2018. 9. 14) 지 논문에서의 사진
이 발명품은 최근 Science 지에 게재되었다. 로봇 하나 발명하는 데에도 똑똑한 연구자들의 고도로 복잡한 설계와 공학기술과 전자부품들이 필요하다면, 이 로봇보다 훨씬 소형이며, 알을 낳고, 자신과 동일한 생물을 복제해낼 수 있는, 훨씬 더 복잡하고 다양한 종류의 비행곤충들이 생각도 없고, 방향도 없고, 무작위적 복제 오류인 돌연변이들에 의해서 모두 우연히 생겨날 수 있었을까? 조금만 생각해 보라.
*관련기사 : 곤충 모방 비행로봇으로 초파리 비행 완벽 재현 (2018. 9. 14. 연합뉴스)
곤충 모방 비행로봇으로 초파리 비행 완벽 재현 (2018. 9. 14. 문화일보)
많은 과학 분야에서 진화론은 설자리가 없어지고 있다. 오늘날 진정한 과학이 필요하다.
*참조 : 생체모방공학
번역 - 미디어위원회
링크 - https://crev.info/2018/09/bio-inspired-technologies/
출처 - CEH, 2018. 9. 18.
초파리에 들어있는 놀라운 설계
: 초파리는 천문항법을 사용하여 장거리 이동을 한다!
(The Design Packed Into a Fruit Fly)
David F. Coppedge
가장 놀라운 동물은 가장 작은 동물일 수 있다. 초파리(fruit fly, 과일파리)의 머리에는 얼마나 많은 생명공학 기술이 들어있는 것일까?
초파리는 어떻게 사막을 건너 이동하는가?
캘리포니아 공대(Caltech)의 디킨슨 실험실(Dickinson Lab)은 놀라운 사실들을 밝혀오고 있다. 2003년 마이클 디킨슨(Michael Dickinson)은 초파리 Drosophila(2003. 12. 8)의 항해 능력에 대한 보고로 우리를 놀라게 했다. 실험실은 지금도 가동 중인데, 이 작은 생물의 또 다른 능력으로 다시 한번 놀라게 만들고 있었다. 그것은 초파리가 천문항법(celestial navigation)을 사용한다는 것이다. 칼텍의 보도자료(2018. 8. 30)에 따르면,
고대의 선원들과 초파리의 공통점은 무엇인가? 칼텍의 연구자들은 초파리가 직선적으로 항해하기 위해서, 고대의 선박 항해자들과 유사하게 태양과 같은 천문을 사용한다는 것을 발견했다.
연구자들은 Current Biology(2018. 8. 30) 지에 게재된 논문에서 그 내용을 기술하고 있었다. 그 연구는 마이클 디킨슨 실험실의 생물공학 및 항공학 교수인 에스더와 아베 (Esther M. and Abe M. Zarem)의해서 수행되었다.
그 논문은 어떠한 표식도 없는, 길이 없는 사막에서, 직선적으로 나갈 필요가 있는 사람들에게 하나의 도전이 되고 있었다.
이것은 사막에서 흔히 있는 Drosophila 초파리에 관한 수수께끼이다. 거의 40년 전에, 한 연구는 초파리가 음식과 물을 찾아서 하룻밤 사이에 9마일(14.4km)을 날아갈 수 있음을 발견했다. 이 작은 곤충들은 어떻게 그러한 먼 거리를 항해할 수 있는 것일까?
”초파리가 황량한 지역을 가로질러 날아갈 경우에, 원형으로 날아가는 것은 위험할 수 있다. 그 경우에 그들은 먹이나 물을 거의 찾을 수 없을 것”이라고 연구의 선임저자인 이사벨 기랄도(Ysabel Giraldo)는 말한다. ”놀랍게도 초파리는 계절에 따라 모하비 사막(Mojave Desert)과 같은 환경에서도 발견된다. 그들은 어딘 가에서부터 거기에 도착했음에 틀림없고, 그들은 주변을 이해하고 있음에 틀림없다.”
디킨슨의 독창적인 비행 시뮬레이터를 사용하여, 연구자들은 놀랍게도 작은 초파리가 태양을 표식(marker)으로 사용할 수 있음을 발견했다. 초파리는 시야의 한 지점에서 밝은 지점을 고정하고, 장거리를 날아가며 그것을 유지하고 있었다. 디킨슨은 말했다. ”과일 박스와 포도 위를 날아다니는 귀찮은 작은 초파리들이 태양을 이용하여 수 마일을 항해할 수 있는 능력을 갖고 있다는 사실은 정말로 놀랍다.” 초파리에는 이것을 수행하기 위한 '나침반 뉴런(compass neurons)'이 장착되어있었다. 연구자들은 비행 시뮬레이터를 작동시키는 동안, 강력한 현미경을 사용하여 초파리의 머리 안을 작은 구멍을 통해 관찰하였다. 그들은 활성 뉴런이 빛나는 것을 관찰하기 위해 유전적으로 변형된 뉴런을 사용했다. 그러한 항해를 하기 위해서, 나침반 뉴런은 그들의 정보를 통합한 다음에, 날개 근육으로 신호를 보내 경로를 유지할 수 있어야 한다.
제왕나비(Monarch butterflies)와 같이 잘 알려진 이동성 곤충들도 특수 뉴런을 갖추고 수천 마일 이동할 수 있다. 그러나 초파리는 이들 보다 훨씬 작아서, 그들의 장비는 초소형 생체공학 기술임을 의미한다. 디킨슨의 논문에 관한 상세한 정보는 Caltech Coda에서 찾아볼 수 있다.
진화론자들은 초파리가 수백만 년 전부터, 이와 같은 항해를 해왔을 것이라고 믿고 있지만, 우연한 돌연변이와 자연선택에 의해서 어떻게 그러한 초소형 생체공학 기술이 생겨났는지는 말하고 있지 않았다.
어떻게 지속적 비행이 조절되는가?
초파리를 연구한 연구자들이 인도에서도 있었다. 인도의 연구자들은 초파리에서 지속적 비행을 가능하게 하는 시스템의 한 구성 요소를 발견했다. 그들은 초파리의 비행에 대해 흥분하고 있었다. 그 이유는 무엇일까? 인도의 타타 기초연구소(Tata Institute of Fundamental Research, TIFR)의 국립생물과학센터의 보도 자료는 연구자들이 발견한 내용을 설명하고 있었다.
당신은 작은 초파리가 과일 그릇 주변에서 끊임없이 윙윙 날아다니는 것에 대해 궁금해 한 적이 있는가? 이러한 행동은 엄청난 에너지를 요구할 뿐만 아니라, 지속적 비행이 가능하도록 해주는 고도로 조정된 신경신호 전달을 필요로 한다. 가이티 하산(Gaiti Hasan) 교수의 최근 연구는 오랜 시간 비행을 가능하게 하고, 과일 상자에 위치하는 것에 도움을 주고 있는, 초파리 뇌에서 필요한 분자를 밝혀내었다. 그 연구에서 확인된 핵심 단백질 중 하나는 FMRFa receptor(FMRFaR)이다. 저자들은 초파리가 장시간 동안 비행을 유지할 수 있도록 돕는, 성체 초파리의 뇌에 있는 특별한 부류의 뉴런에서 작동하고 있는, 이 수용체의 역할을 기술하고 있었다.
.초파리의 몸 길이는 수 밀리미터에 불과하다.
이 수용체는 호르몬 신호를 행동으로 변환시키는 것으로 알려진, G-단백질 연결수용체 (G-protein coupled receptors, GPCRs) 계열 중의 하나이다. 연구팀은 돌연변이가 일어나 FMRFaR이 없는 초파리는 단지 반 정도의 시간만 비행할 수 있음을 발견했다.
”초파리가 수 분간 지속적인 비행으로 목적지에 도달하기 위해서 감각 정보의 연속적인 흐름이 요구된다. 여기에서 우리는 도파민성 신경세포 위에 FMRFaR이 그러한 감각 정보를 처리해서, 올바른 방향으로 지속적 비행을 가능하게 해준다고 생각한다”고 하산 교수는 말한다.
그러나 그 단백질을 만드는 유전정보는 어디에서 왔는가? UniProt 데이터베이스에 따르면, FMRFaR 단백질은 549개의 아미노산으로 이루어져있다. 이들의 정확한 순서를 지정하고 있는 코돈(유전암호)은 어떻게 생겨났는가? Illustra Media의 영상물 ‘오리진(Origin)‘은 그것의 1/3 정도 크기의 단백질(150개 아미노산으로 된 단백질)도 결코 우연히 발생할 수 없음을 보여주고 있다. 그것에 대한 유전암호가 우연히 생겨나는 것은 말할 것도 없고 말이다.
진화론자들은 얼마나 많은 지적설계의 사례들을 보아야 그들의 우연에 의존하는 이론을 포기할까?
*참조 : How the common fruit fly uses the sun to navigate (Phys.org. 2018. 8. 30)
https://phys.org/news/2018-08-common-fruit-sun.html
Fruit flies use the power of the sun to help them fly in straight lines (The Register, 2018. 8. 31)
https://www.theregister.com/2018/08/31/fruit_flies_sun/
번역 - 미디어위원회
링크 - https://crev.info/2018/09/design-fruit-fly/
출처 - CEH, 2018. 9. 8.
벌은 정말로 정말로 현명하다.
(Bees Are Actually Really, Really Smart)
Frank Sherwin
”이들은 고도의, 고도의, 고도의 지능을 갖고 있는 생물이다.” 보전 생물학자(conservation biologist)인 리즈 할터(Reese Halter)는 매혹적인 벌(bee)에 대해서 이렇게 말했다.[1] 벌은 경로를 알려주는 복잡한 춤을 춰서, 다른 벌과 소통할 수 있는 능력을 갖고 있다. 할터의 팀은 또한 벌이 퍼즐을 해결할 수 있는 능력이 있음을 발견했다. 2006년에 과학자들은 벌이 생체시계를 갖고 있음을 발견하고 놀랐다. 그들은 그것을 다음과 같이 기술하고 있었다 : ”정확하게 그 본질이 무엇인지 결정되지 않은, 내생적인 생리적 메커니즘이 외부적 사건의 시기를 독립적으로 유지하고 있다.”[2] 그러한 것은 사실 곤충보다 사람과 더 비슷하다.[3]
하나님은 벌의 뇌를 잔디 씨앗과 같은 크기로 설계하셨지만, 그들은 매우 현명하다.
하나님은 벌의 뇌를 잔디 씨앗과 같은 크기로 설계하셨지만, 벌들은 매우 현명하다. ”벌은 작은 뇌에도 불구하고 놀라운 업적의 행동들을 할 수 있다.” 런던 대학의 로열 홀러웨이 생명과학 스쿨의 나이젤 레인(Nigel Raine) 박사는 말했다.[4] 1,500g 정도의 사람 뇌에는 약 860억 개의 뉴런(신경세포)이 있는 데에 비하여, 벌의 뇌는 단지 1백만 개의 뉴런으로 구성되어있다. 곤충학자들은 뇌의 크기가 크다고 반드시 더 똑똑한 것이 아니라는 것을 깨닫고 있는 중이다. 대신에 그 답은 신경회로, 특히 회로의 상호연결성(circuits’ interconnectivity) 및 모듈방식(modularity)에 있을 수 있다.[5] 다른 말로 하면, 이것은 진화론이 주장하는 우연 및 장구한 시간과 반대로, 정교하고 정밀한 설계를 보여준다.(로마서 1:20)
실험실에서 벌의 인지능력을 실험했을 때, 과학자들은 계속 놀라고 있었다.
예를 들어, 벌은 뚜껑을 미끄러뜨리거나 들어올리는 법을 배울 수 있으며, 보상을 얻기 위해서 무게를 증감시키는 볼을 밀어낼 수 있다. 연구자들이 순진한 벌이 있는 벌통에 퍼즐을 풀 수 있는 방법을 알고 있는 벌을 넣었을 때, 알지 못했던 동족들은 어떻게든 그 해결책을 전달받을 수 있었다.
곤충학자들은 최근에 벌이 숫자(numbers)를 구별할 수 있는 능력을 가지고 있음을 발견했다. ”꿀벌은 몇 개의 점(dots)들이 있는 종이 보다, 점이 없는 종이를 식별할 수 있다.”[7] 사람은 동물과 구별되는 특성으로, ”제로”라는 추상적 개념을 이해할 수 있는 것으로 가정되어 왔다. 그러나 하워드와 그의 연구팀은 이제 훈련받지 않은 벌이 ”비어있는” 영(0)의 개념을 이해하고 있음을 보여주었다. 저자는 말했다. ”벌은 앵무새, 영장류와 같은, 심지어 취학 전 아동과 같은 수준의 이해력을 갖고 있는 것이 입증되었다.”
루콜라(Loukola)와 그의 연구팀은 꿀벌의 학습 능력이 탁월하다고 결론지었다.
이러한 전례 없는 인지적 유연성(cognitive flexibility)은 선진 학습 능력이 필요한 생물 종에서, 생태적 압력으로 인해 전혀 새로운 행동 양식이 비교적 순식간에 출현할 수 있음을 암시한다.[8]
”전례 없는 인지적 유연성”을 갖고 있는 벌의 작은 뇌는 창조주의 지혜를 나타내고 있는 것이다.
References
1. Hugo, K. Intelligence test shows bees can learn to solve tasks from other bees. PBS News Hour. Posted on pbs.org February 23, 2017, accessed June 10, 2018.
2. Allaby, M. 2014. Dictionary of Zoology. Oxford: Oxford University Press, 73.
3. Biological clock of honey bees more similar to human than to insects. AAAS. Posted on Eurekalert.org October 25, 2006, accessed June 10, 2018.
4. Bees’ tiny brains beat computers, study finds. The Guardian. Posted on theguardian.com October 24, 2010 accessed June 10, 2018.
5. Chittka, L. and J. Niven. 2009. Are Bigger Brains Better?Current Biology. 19 (21): R995-R1008.
6. Hugo, K. PBS News Hour. February 23 2017.
7. Howard, S. et al. 2018. Numerical ordering of zero in honey bees. Science. 360 (6393): 1124-1126.
8. Loukola, O. et al. 2017. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science. 355 (6327): 833-836.
*Mr. Frank Sherwin is Research Associate, Senior Lecturer, and Science Writer at the Institute for Creation Research.
*관련기사 : 인간 뉴런 10만분의 1이지만…꿀벌도 ‘0’ 개념 안다 (2018. 6. 18. 한겨레)
http://www.hani.co.kr/arti/science/science_general/849487.html
꿀벌, 공굴리기 가르칠 수 있다! (2017. 2. 27. 동아사이언스)
http://dongascience.donga.com/news.php?idx=16787
출처 - ICR, 2018. 7. 19.
링크 - http://www.icr.org/article/bees-really-smart
번역 - 미디어위원회
생물들이 겨울 추위를 견디는 방법.
: 동결 방지 부동액을 갖고 있는 곤충들
(Withstanding Winter Weather)
뜨거운 7월의 낮 시간에 당신은 겨울의 냉기를 그리워할 수 있다.[1], 그러나 고위도 지역에서 여름은 잠시 추위가 완화됐을 뿐이다. 북극의 곤충과 거미들은 차가운 피를 갖고 있다. 그래서 동결은 실제로 죽음에 이르게 할 수 있다!
곤충과 거미는 얼음과 동결의 위협에서 어떻게 벗어날 수 있는 것일까? 그 대답은 지적설계에 의한 창조를 강력히 지지하고 있다. 진화론자들은 지나친 단순화 오류(oversimplification fallacy)를 일상적으로 범하고 있다. 그들은 생물들의 생존 특성을 마치 만병통치약, 또는 모든 사이즈에 맞는 옷과 같이 취급하고 있다.[3] 그 반대가 사실이다. 하나님은 다양성과 세밀한 설계를 사용하셔서, 동일한 문제에 대해서 다양한 해결 전략을 각 생물마다 장착시켜 놓으셨다. 그래서 하나님은 정교한 생명공학적(환경 추적 프로그램을 포함하여) 방법으로, 치명적인 동결을 방지하기 위한 5가지의 매우 다른 해결책들을 생물들에 넣어 놓으셨던 것이다.
옵션 1 및 2 : 결코 얼지 않는 곳에서 살거나, 그곳으로 이주한다. 동결로부터 살아남기 위한 가장 쉬운 전략은, 정글에서 살아가는 곤충들처럼, 결코 동결되지 않는 곳에서 살아가는 것이다. 또 다른 회피 전략은 제왕나비(monarch butterflies)처럼 월동을 위해 계절적으로 남쪽으로 이주했다가, 봄에 다시 북쪽으로 돌아오는 것이다.[4]
옵션 3 : 동면에 들어간다. 개미와 흰개미(termites)를 포함하여, 몇몇 비이주성 사회적 곤충들은 동면과 유사한 상태로, 지하동결선(frostline) 아래의 지하로 들어가 웅크리고 휴면상태에 들어가는 겨울에 살아남을 수 있다. 거기서 그들은 봄을 기다리면서 저장된 먹이를 먹고, 따뜻한 곳에 머무는 것이다.[5]
옵션 4 및 5 : '부동액'을 갖고 있거나, 동결에 견디는 구조를 갖는다.
많은 곤충들과 거미에 있는 한 놀라운 생존 옵션은 그들의 혈림프(hemolymph, 곤충의 혈액)에 얼지 않도록 해주는 생화학적 부동액이 들어있는 것이다. 하나님은 일부 곤충의 혈림프가 낮은 빙점을 갖도록 설계하셨다. 그들은 자일로만난(xylomannan)이나 글리세롤(glycerol)과 같은 당중합체(sugar polymers)와 연결되어 있는 열이력 단백질(thermal hysteresis proteins) 또는 부동 단백질(antifreeze proteins)을 갖고 있다.[6, 7] 추운 온도에서 살아가는 곤충들의 대부분은 이 '부동액' 옵션을 사용하고 있지만, 일부 곤충들은 사실 어느 정도의 동결을 견딜 수 있다.[6~8]
곤충이 견딜 수 있는 방법은 자신의 몸에 얼음 결정이 형성되지 않도록 하거나, 형성된 얼음 결정에 견디는 것이다. 얼음 결정의 형성은 과냉각(super-cooling)에 의해서 회피될 수 있다. 이것은 빙점을 끌어내리고, 혈림프에 폴리올 화합물의 축적(따라서 삼투압을 증가시키고), 탈수(이 또한 삼투압을 증가시킴), 부동단백질의 합성, 소화관에서 얼음 핵의 배출 또는 차폐 등을 통해서 얼음 결정의 형성을 저지한다.[7]
북극딱정벌레(arctic beetles)와 같은, 몇몇 동결-내성 곤충들은 세포외 구획에 혈림프의 얼음 결정 형성을 제한하기 위해서, 세포내 얼음핵 인자를 조절하고, 단백질-안정화 결빙방지 물질을 갖춘, 혈림프를 갖고 있는 것으로 나타난다. 이것은 세포 내의 결정화를 방지한다.[6, 8]
어떻게 북극딱정벌레는 지구의 계절적 온도 변화와 광주기성 리듬에 맞추어 이러한 훌륭한 동결 방지 시스템들을 진화시킬 수 있었던 것일까? 방향도 없고, 목적도 없는, 무작위적인 돌연변이들이 일어나서, 추운 서식지에 사는 딱정벌레와 거미의 유전자에 이들 부동단백질들과 화학물질들을 만드는 유전정보가 우연히 성공적으로 생겨났는가? 논리적으로 생화학적으로 생각해볼 때, 무작위적인 과정이 이러한 경이로운 물질들과 시스템과 유전정보를 만들어낼 수 있었을까? 이것은 하나님이 창조하셨음을 증거하고 있는 것이다.
References
1. Contentment, as seasons and weather change, can be a challenge (Philippians 4:11). After the Flood, God promised that Earth would experience seasonal weather cycles, including recurring cold weather (Genesis 8:22). This promise provides predictability for humans and animals.
2. Some say winter frost or icy freezes kill off the bugs. They always return in spring, so obviously they are surviving winter somehow.
3. Tomkins, J. P. 2018. Human Traits Not So Simple After All. Acts & Facts. 47 (2): 15.
4. Moody Bible Institute. 2010. Animal Kingdom—Great Are Thy Works. DVD. The Wonders of Creation, vol. 5. Questar, Inc.
5. Proverbs 30:25. See also Cabrera, B. J. and S. T. Kamble. 2001. Effects of Decreasing Thermophotoperiod on the Eastern Subterranean Termite (Isoptera: Rhinotermitidae).Environmental Entomology. 30 (2): 166-171. ('Our results...suggest that successfully overwintering R. flavipes [termite] colonies retreat to soil depths where freezing temperatures are not encountered.”)
6. Sømme, L. 1995. Invertebrates in Hot and Cold Arid Environments. New York: Springer, 194-213. Regarding xylomannan’s role in Alaska’s flat bark beetle, see Rozell, N. Alaska Beetles Survive ‘Unearthly’ Temperatures. Geophysical Institute, University of Alaska Fairbanks. Posted on gi.alaska.edu March 1, 2012.
7. Murphy, J., T. Rossolimo, and S. Ada. 2008. Cold-hardiness in the Wolf Spider Pardosa groenlandica (Thorell) with Respect to Thermal Limits and Dehydration. Journal of Arachnology. 36 (1): 213-215.
8. Zachariassen, K. E. and H. T. Hammel. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature. 262 (5566): 285-287.
* Dr. Johnson is Associate Professor of Apologetics and Chief Academic Officer at the Institute for Creation Research.
번역 - 미디어위원회
링크 - http://www.icr.org/article/withstanding-winter-weather/
출처 - ICR News, 2018. 6. 29.
구분 - 4
옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6868
참고 : 6747|6291|5296|3608|3175|1921|6718|6537|6290|5984|5689|5520|5472|5383|5284|5104|5088|4849|4456|4369|3806|2089|5598|5600|5608|5671|5673|5694|5751|5767|5752|5759|5773|5810|5814|5839|5845|5850|5856|5888|5891|5894|5899|5902|5438|5920|5926|5932|5934|5959|5960|5962|5975|5976|5997|6001|6023|6034|6069|6159|6160|6161|6162|6163|6165|6178|6199|6245|6272|6289|6302|6304|6308|6324|6336|6406|6475|6492|6494|6516|6522|6526|6530|6536|6557|6572|6584|6590|6595|6609|6734|6741|6751|6752|6761|6763|6773|6791|6795