LIBRARY

KOREA  ASSOCIATION FOR CREATION RESEARCH

창조설계

미디어위원회
2014-09-19

물총고기는 어떻게 물리학을 배웠을까? 

(How Did the Archer Fish Learn Physics?)

David F. Coppedge


       대기 중에 있는 곤충에 물(water jet)을 쏘아 잡아먹는 한 작은 물고기는 과학자들에게 광학(optics)과 추진(propulsion) 기법에 대한 깊은 인상을 남기고 있었다.

New Scientist(2014. 9. 4) 지에 게재된 비디오 동영상은 물고기가 공기-물 경계에 은밀히 다가와 잠시 정지했다가, 놀라운 정확도로 수풀 위에 있는 곤충을 물총으로 떨어뜨리는 장면을 보여주고 있다. ”물총고기(Archer fish)는 전문 저격수이다” 그 기사는 시작하고 있었다. ”이제 그 물고기는 물의 발사를 미세하게 조정하고 있는 것처럼 보인다.”


PhysOrg, Science Daily, Nature, BBC NewsLive Science(2014. 9. 4) 지 등에 게재된 관련 기사들은 이 작은 물고기가 이 작업을 수행하기 위해서 물리학의 여러 문제들을 어떻게 극복했는지를 감탄하며 기술하고 있었다. 공기-물 경계면 때문에, 물총고기는 굴절률을 고려하여, 정확한 각도를 산출할 수 있어야만 한다. 또한 그 물고기는 물 아래에서 벌레까지의 거리를 정확하게 계산해야만 한다. 그리고 이제, 바이로이트 대학(University of Bayreuth)의 과학자들은 그 물고기가 첫 번째 발사를 강화시키는 일련의 뒤따르는 발사들, 즉 ”여분의 펀치(extra punch)”를 날리고 있음을 알게 되었다. 이러한 발사는 너무도 빨라서 고속카메라의 촬영에 의해서 알게 되었다.


BBC 기사는, 깜짝 놀라며 이것은 ”미친 생각(crazy idea)”이라고 말했던 한 과학자의 말을 인용하고 있었다. 그는 ”동력학적 분사 제어”를 하고 있는 이 물고기가 인지 기능의 진화(cognitive evolution)에 대한 흔적을 보여주고 있는지 궁금해 하고 있었다 : 

슈스터(Schuster) 교수는 그 물고기의 물총 발사의 정확성은 일부 이론가들이 인간의 인지 능력의 확장을 촉발했다고 주장되는 인간의 던지기(throwing, 투척) 방법과 유사한 방법으로 진화될 수 있었을 것이라고 믿고 있다...

”두 배의 범위로 더 멀리 던지는 것은 신경세포의 수에서 대략 8배의 증가가 필요하다고 사람들은 계산했다”고 슈스터 교수는 말했다.

그러면 이들 물고기는 물속에서 사는 가장 똑똑한 동물로 진화했다는 것인가?

”나는 그들이 인간으로 발전할 것이라고는 생각하지 않는다. 그러나 물총고기는 물고기에서 예상되지 않는 다수의 매우 이상한 능력들을 가지고 있다.”

”아마도 그 뇌를 좀 더 자세히 살펴본다면, 던지기(throwing)가 인간의 진화에서 한 역할을 수행했던 것처럼, 사격이 그들의 능력을 발전시키는 데에 유사하게 중요한 역할을 했음을 보여줄지도 모른다.”

”그건 그냥 나의 미친 생각이다.”

Nature 지에서 위와 같은 간단한 언급 외에, 다른 기사들에서는 진화를 언급하지 않고 있었다. ”이 능력은 사람의 던지기와 유사하다. 그래서 물고기 인식 기술의 진화에 기여했을 것이라고 저자들은 말한다.”

그러나 지금까지, 물총고기 철학 협회는 관찰되지 않았다.



우리는 '놀라운', '경이로운', ’믿을 수 없는‘ 등과 같은 단어들로 수식된 많은 기사들을 볼 수 있다. 그러나 이러한 물총고기가 보여주는 경이로운 광학과 물리학이 방향도 없고, 목적도 없고, 지능도 없는, 무작위적인 복제 실수로, 우연히, 어쩌다가 생겨났다는 진화론적 설명 외에 다른 설명은 검토될 수 없다. 슬프게도 오늘날의 과학자들은 찰스 다윈의 망령에서 벗어나지 못하고 있다.



*관련기사 : 물고기는 멍청한가? 물총고기 보면 생각 달라진다 (2018. 12. 26. 한겨레)

https://www.hani.co.kr/arti/animalpeople/ecology_evolution/875858.html

조준·힘·추락 위치·헤엄 속도… 물고기도 머리를 쓴다 (2020. 7. 26. 조선일보)

https://www.chosun.com/site/data/html_dir/2014/10/25/2014102500092.html


번역 - 미디어위원회

링크 - http://crev.info/2014/09/how-did-the-archer-fish-learn-physics/

출처 - CEH, 2014. 9. 14.

미디어위원회
2014-09-12

문어의 피부를 모방한 최첨단 위장용 소재의 개발. 

(Octopus Skin Inspires High-Tech Camouflage Fabric)

by Brian Thomas, Ph.D.


      문어(octopus)는 어떤 종류의 주변 지형도 모방하여 의지적으로 피부의 색깔을 바꿀 수 있다. 문어의 위장 피부는 그 자체가 경이로울 정도로 복잡한 생물학적 기계이다. 문어의 위장 기술은 과학자들이 군인들의 전투복과 장갑차에 모방하려고 할 정도로 위대한 업적이다.

최근에 휴스턴 대학, 일리노이스 대학, 노스웨스턴 대학의 연구자들은 검은색과 흰색 사이에서 자동적으로 변화되어, 여러 명암의 회색을 띠게 하는 열-감지 소재(heat-sensitive sheet)를 개발했다.


이러한 작은 시제품을 만드는 것도 결코 쉬운 일이 아니었다. 휴스턴 대학의 뉴스 보도는 말했다. ”이 제품의 유연성 있는 표면은 결합된 반도체 작동기, 무기-반사경 및 유기-색변환 물질로 된 광센서와 전환 스위치 등으로 구성된 극도로 얇은 층(ultrathin layers)으로 이루어져 있다. 이것은 자동적으로 배경 색과 조화되도록 작동된다.”[1]


연구팀은 문어의 피부에서 영감을 얻은 그들의 개발품에 대한 설명을 PNAS(Proceedings of the National Academy of Sciences) 지에 발표했다.[2] 먼저, 문어는 주변의 색깔을 탐지하여 인식한다. 따라서 이 인체공학적 소재인 감광성 반도체 소자(photodiodes)와 다중화 스위치는 배경 패턴을 감지한다. PNAS 논문의 44p에서 저자들은 그들의 광 검출기 배열을 제조하는 데에 필요한 76개의 구별된 단계들과, 다이오드 배열을 제조하는 데에 필요한 74개의 단계들을 목록화 했다. 그리고 최종 제품이 만들어지기 위해서 이러한 배열들을 결합시키는 추가적 단계가 필요했다.


그러나 이 고도로 복잡한 장치도 살아있는 문어에 들어있는 기술에 비하면, 아무 것도 아니다. 한 온라인 영상(Newsy online)은 PNAS 지의 연구자들 중 한 명이 National Geographic 지에서 말한 내용을 인용하고 있었다. ”오징어, 문어, 갑오징어의 (순간적인 색깔 변화와 위장술을 선보이는) 동영상을 본다면, 우리는 그들이 가지고 있는 복잡한 기술의 근처에도 도달하지 못했음을 깨닫는다.”[3]


만약 사람이 만든 자동 색깔 변화 장치에서 단 하나의 제조 단계라도 빠진다면, 그것은 기능을 할 수 없다. 그렇다면 이보다 훨씬 복잡한, 생물체에 들어있는 색깔 및 모양 변화 과정들이 무작위정인 과정으로 극히 우연히 어쩌다가 모두 연속적으로 일어났을 가능성보다, 그것은 지적설계 되었다고 보는 편이 더 논리적이고 합리적이지 않겠는가? 초고도 해상도의, 풀-컬러 색상을 가진, 자가 치유되는 문어의 피부는 초월적 지성의 창조주를 가리키고 있는 것이다.



References

1.Kever, J. Researchers Draw Inspiration for Camouflage System From Marine Life. University of Houston News. Posted on uh.edu August 19, 2014, accessed August 19, 2014.
2.Yu, C. et al. Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the National Academy of Sciences. Published online before print, August 18, 2014.
3.Awesome New Camouflage Sheet Was Inspired By Octopus Skin. Newsy. Posted on sciencedaily.com August 19, 2014, accessed August 19, 2014.


*참조 : Octopus Camouflage (youtube 동영상, 문어의 놀라운 위장 능력)
https://www.youtube.com/watch?v=eS-USrwuUfA

Most intelligent Mimic Octopus in the world (youtube 동영상)
https://www.youtube.com/watch?v=t-LTWFnGmeg

 

*관련기사 : 위장 천재 문어의 피부를 ‘군복’에 넣다 (2014. 8. 19. 나우뉴스)
http://nownews.seoul.co.kr/news/newsView.php?id=20140819601013


번역 - 미디어위원회

링크 - http://www.icr.org/article/8337/ 

출처 - ICR News, 2014. 8. 27.

미디어위원회
2014-07-30

울퉁불퉁한 전갈 외피의 비밀 

(Learning from bumpy scorpion armour)

Dr. Jonathan Sarfati 


      북아프리카 사막의 전갈(yellow fat-tail scorpion) 안드록토누스 아우스트랄리스(Androctonus australis)는 지표면에서 대부분의 시간을 보낸다. 따라서 강철의 페인트도 벗겨낼 수 있는 거친 모래폭풍에 노출되지만, 그 전갈은 보호되고 있는 것처럼 보인다.

iStockphoto.com

중국 지린 대학의 한(Han Zhiwu)과 그의 연구팀은 그러한 이유가 전갈의 외부 코팅, 또는 외골격에 있음에 틀림없다고 생각했다. 그래서 그들은 그 물질, 즉 키틴(chitin)에 빛(형광)을 내도록 하는 자외선을 사용하여, 현미경 하에서 분석했다.[1] 그들은 외피 표면에서 10㎛ 높이, 25와 80㎛ 사이의 직경을 가지고 있는 미세한 돔 모양의 과립(dome-shaped granules)들을 발견했다.[2]


그런 다음 한의 연구팀은 컴퓨터 시뮬레이션(Computational Fluid Dynamics, CFD, 컴퓨터 유체역학)을 통하여 매끄러운 외피에 대한 전갈의 울퉁불퉁한 외피를 비교 시험해보았다. 연구자들은 그 돔이 실제적으로 공기 흐름을 비껴가게(deflect) 한다는 것을 발견했다. 이것은 매끄러운 표면에 비해 침식 속도를 50% 정도 감소시키고 있었다. 그리고 그들은 압축공기로 인위적으로 발생시킨 실제 모래폭풍 하에서 전갈의 표면을 모방한 강철판(steel plates)을 시험해보았다. 연구자들은 전갈의 패턴에 가장 근접한 높이 4mm, 폭 5mm, 간격 2mm의 홈(grooves)들을 만들었다. 그런데 이것도 매끄러운 표면에 비교하여 표면침식을 20%나 감소시키는 것이 확인되었다. 전갈 외골격의 미세한 패턴만큼 좋지는 않았지만, 이것도 커다란 개선 효과를 가져다주었다.   


그러한 대기 중 먼지에 의한 '고체 입자 침식'은 헬리콥터의 회전 날개, 터빈의 날개, 다른 빠르게 움직이는 표면 등에서 수백만 달러의 손상 원인이 되고 있다. 그리고 그러한 손상은 사막에서는 훨씬 심해진다.[3] 연구팀은 울퉁불퉁한 표면이 기계의 수명을 연장할 수 있다고 제안했다.


우리는 혹등고래(humpback whales)의 지느러미에 나있는 돌기가 물의 저항력을 매우 감소시키는 것을 알고 있다. (아래 관련자료 링크 1번 참조). 이 전갈의 외피는 각광받고 있는 생체모방공학 분야에서 또 하나의 주제이다. 물론 이 분야에서 연구하고 있는 과학자들은 최고의 기술을 가진 과학자들이다. 그러나 그들도 모방하기를 원하는 이러한 놀라운 구조가 무작위적인 자연적 과정으로 우연히 생겨날 수 있었을까? 아니면 그러한 구조를 만드신 어떤 설계자가 계심을 가리키고 있는 것이 아닐까?


Related Articles

Flighty flippers


Further Reading

Scientists copying nature (biomimetics)


References and notes
1. Han Zhiwu, et al., Erosion resistance of bionic functional surfaces inspired from desert scorpions, Langmuir 28(5):2914–2921, 2012 | DOI: 10.1021/la203942r.
2. Not a scratch: Scorpions may have lessons to teach aircraft designers, Biomimetics, economist.com, 4 February 2012. 3. Scorpions inspire scientists in making tougher surfaces for machinery.  ScienceDaily, 26 January 2012.
4Humpback whale flipper inspires fan design, Creation 33(3):11, 2011; cf. creation.com/flighty-flippers.
5. See also the articles under creation.com/biomimetics. 


*관련기사 : 당신이 몰랐던 자연의 신비 “전갈이 형광이라고?” (2013. 11. 29. 데일리안)

https://www.dailian.co.kr/news/view/407252

도마뱀을 사냥한 전갈 ‘포착’ (2018. 10. 10. 동아사이언스)

https://www.dongascience.com/news.php?idx=24332

눈앞까지 사마귀가 오기를 기다리는 '독침전갈'의 죽음의 병기! (National Geographic, youtube 동영상)

https://www.youtube.com/watch?v=eqcRlarnr9I

전갈이 자신을 찔러도 독 저항력... 영향없어 (2009. 2. 14. 부산일보)

https://www.busan.com/view/busan/view.php?code=19981017000560


번역 - 미디어위원회

링크 - http://creation.com/scorpion-armour-bumps-biomimetics 

출처 - Creation 35(2):56, April 2013.

미디어위원회
2014-07-10

생물들의 정교한 공학기술과 최적화. 

: 박쥐, 말벌, 물고기, 꿀벌, 개미, 얼룩말과 생체모방공학 

(Life Shows Exquisite Engineering and Optimization)

David F. Coppedge


     공학자들은 동물들의 경이로운 능력에 경탄하고 있다. 어떻게 무작위적인 돌연변이와 자연선택이 이러한 완벽하게 구현되는 첨단 공학기술들을 만들어낼 수 있었단 말인가?


박쥐 날개의 제어 기술 : 박쥐 날개에 있는 작은 근육은 뻣뻣한 상태로 유지되어, 그들의 비행을 미세하게 조정하고 있음을 브라운 대학(Brown University2014. 5. 23)의 연구자들은 발견했다. ”박쥐들은 비행 동안에 날개의 경직성과 곡률(curvature)을 조정하기 위해서, 본질적으로 늘어진 날개의 피부막 내에 묻혀있는 거의 머리카락 두께의 얇은 근육 네트워크를 가지고 있다”고 보도 자료는 말했다. 근육은 이전의 생각처럼 수동적이 아니라, 능동적이었고, 또한 동시에 작동하고 있었다. 브라운 대학의 공학자들은 그 날개를 모방하기 위해서, 이것을 배우기 원하고 있었다. 그들은 공학기술에 영감을 얻기 위해서 생물학을 사용하고 있었고, 생물학에 영감을 얻기 위해 공학기술을 사용하고 있었다. (즉 생물학에 대한 이해를 고취하기 위해 역-설계를 시도하고 있었다). 박쥐 비행의 고도로 느리게 움직이는 짧은 영상물은 박쥐 날개의 우아한 동작을 잘 보여주고 있었다.


말벌의 산란관에 장착된 드릴 : 말벌(wasp)의 산란관(ovipositor, 알을 낳는 도구) 끝은 전자현미경 사진에 의하면 매우 복잡한 구조를 가지고 있었는데, 아연(zinc)으로 끝이 씌워진 톱니 모양의 가장자리(serrated edges)를 가지고 있었다고 BBC News(2014. 5. 29)는 말했다. 강화된 첨단을 가지고 있는 미세 드릴과 같은 이러한 디자인은 말벌이 알을 저장하기 위해 과일에 구멍을 뚫는 것을 용이하게 해주고 있었다. 알이 통과하는 중앙 통로를 포함하여 산란관은 사람의 머리카락보다도 더 가늘다. (직경은 15마이크로에 불과하지만 길이는 무려 7~8mm에 이른다고 PhysOrg(2014. 5. 28) 지는 말한다). 그러나 아직 설익은 무화과 열매의 단단한 목질성 껍질에 구멍을 뚫기에 충분히 강하다. 뿐만 아니라 산란관은 말벌의 알들을 위한 최고의 자리를 감지할 수 있는 감각기를 포함하고 있다. 또한 그 구조는 실질적으로 부러지지 않고 구부러진다. 아연 때문에 산란관 끝부분의 강도는 치과 임플란트에 사용되는 아크릴 시멘트에 비교될 수 있다. ”연구자들은 무화과 말벌(fig wasp)의 알을 낳는 기술은 미세수술을 위한 새로운 도구 개발에 영감을 줄 수 있을 것으로 생각하고 있었다.” 그러나 과학자들은 실용적 가치보다 자연이 어떻게 작동했는지를 보는 것에 흥미로워하고 있었다. 


물고기 아가미의 최적화된 간격 : PNAS (2014. 5. 20) 지의 새로운 한 논문은 물고기 아가미(fish gills)는 최대 산소 전달을 위한 최적의 간격을 가지고 있음을 밝혀냈다. ”물고기 아가미에 있어서 최적의 층상 배열”에서, 한국의 3명의 과학자들은 그 구조의 효율성을 시험했다. 이 경우에서 자연의 최적화는 잘 정의되어 있다고 그들은 말했다. 그러나 연구자들은 그것을 진화의 특성으로 돌리고 있었다. ”생물학적 데이터와 우리 이론의 비교는, 물고기의 아가미는 산소 전달을 극대화하기 위한 최적의 층간 공간 거리를 형성하도록 진화했다는 가설을 지지한다.” 물고기에 작용했다는 몇몇 신화적인 '진화의 압력'이란 말들 외에, 그들은 무작위적인 돌연변이들과 자연선택이 어떻게 어떤 것의 최적화를 달성할 수 있었는지에 대해서는 아무런 말도 하지 않고 있었다. 그들은 단순히 물고기가 그것을 진화시켰다고 네 번이나 주장했다.


물고기와 꿀벌의 충돌 경고 전략 : 물고기와 꿀벌은 모두 충돌 회피 시스템(collision-avoidance systems)을 가지고 있다. 그러나 물고기는 서로 충돌할 가능성이 더 높다고 룬드 대학(Lund University)의 과학자들은 주장했다. 그 이유는 무엇일까? 두 생물 모두 광학적 흐름(optic flow)을 사용하고 있지만, 물고기는 다른 필요성을 가지고 있다. 꿀벌은 공중에서 충돌을 피하려는 것에 의미를 두지만, 물고기는 ”자신의 혼탁한 환경에서 물체로부터 멀리 떨어져 수영하는 것을 꺼린다. 왜냐하면 자신의 주변에 은폐물이 없는 상황 하에서는 자신이 발견될 수 있는 위험이 있기 때문이다.” 그래서 물고기의 행동에는 이유가 있었고, 과학자들은 그것을 연구하기 원하고 있었다 : ”동물의 충돌 경고 시스템에 대한 연구는 동물에 대한 기초 지식뿐만 아니라, 자동조정(automatic steering) 장치와 같은 기계공학 분야에서도 흥미로운 영역이다.”


개미의 먹이 탐색 전략 : Science Daily(2014. 5. 26) 지에 게재된 ”혼돈에서 질서로: 개미가 먹이를 탐색하는데 최적화된 방법”이라는 글에서, 포츠담 연구소의 연구자들은 미래의 현명한 운송시스템(transportation systems)에 도움을 줄 수도 있는 유용한 기술을 개미로부터 배우고 있는 중이라고 말했다. 개미가 무작위적인 보행으로 먹이를 발견했을 때, 길을 따라 냄새를 남김으로 경로를 표시한다. 다른 개미도 동일한 작업을 수행하지만, 가장 짧은 경로는 가장 강한 냄새를 낼 것이다. 이 ”놀라운 고효율성 자기 조직화 방법”으로, 개미 집단은 가장 효율적인 경로를 이동하여 낭비적인 방황을 피한다. 어린 개미는 지식과 경험을 배우고, 늙은 개미는 그것에 능숙하게 된다. ”확실히 독자적 개미는 현명하지 않다. 집단적 활동을 통해서 개미는 더 많은 지식을 축적하게 된다”고 연구자는 말했다. 그 전략은 전체 집단에 유익을 주고, 결과적으로 최적화될 수 있었다는 것이다. 이 논문은 PNAS 지에 게재되었다.   


얼룩말의 이동 : 최적화 및 생명공학 이야기뿐만이 아니라, 이 뉴스는 확실히 주목할 만하다.  아프리카 육상동물 중에서 가장 긴 이동(migration) 동물이 결정됐다. 그 상은 영양(wildebeest)이 아니라, 얼룩말(zebras)에게 돌아갔다. 세계 야생동물보호협회(World Wildlife Fund, 2014. 5. 27) 지는 최근에 이것을 발견했다. 1천 마리에 이르는 얼룩말들이 매년 480km를 이동한다. 그들이 통과하는 지역은 나미비아, 보츠와나, 짐바브웨, 잠비아, 앙골라에 확장되어 있다. 이러한 ”인내력의 예기치 않은 발견”은 세계를 점령한 인간의 교만을 책망하고 있다고, 기사는 지적한다. 그것은 생물들을 ”보존하기 위한 지속적인 과학과 연구의 중요성을 강조해주고 있다”는 것이다. 그러한 놀라운 업적을 이루기 위해서 내장된 좋은 항법장비가 필요하다는 것에 모두가 동의하고 있었다. 


생체모방공학은 승승장구하고 있다 : 캘리포니아 공과대학의 공학 및 과학 잡지(Caltech’s Engineering and Science magazine)에 게재된 기사들은 생체모방공학(biomimetics)의 전성기가 계속되고 있음을 보여주고 있었다. 한 기사는 해파리의 움직임을 모방하기 위해서 3년 반 동안 노력한 한 공학자의 고생과 성공을 다루고 있었다. '자연에서 영감을'이라는 또 한 기사에서, 생물학과, 생물공학과, 새로운 의료공학과 등은 생체모방공학의 잠재력으로 인해 수백만 달러의 보조금을 재단 및 정부로부터 받고 있다는 것이다. 제브라피시 심장((zebrafish hearts)으로부터 흰개미 집(termite mounds)과 사람 항체에 이르기까지, 캘리포니아 공과대학에서 연구되고 있는 ”자연으로부터 영감된' 주제들은 인간의 건강과 복지에 중요한 돌파구를 약속해주고 있다는 것이다.



‘진화’라는 단어는 이들 이야기 주변에서 사용되고 있지만, 쓸모없는 것이다. Caltech E&S 지의 글에서 한 의공학자의 말이 전형적인 예이다 : ”우리 몸이 어떻게 작동되고 있는지를 연구하는 동안, 나는 종종 인간이 만든 공학적 장치와 자연에서 진화된 장치들 사이에 많은 유사성을 발견한다. 그것들은 잘 설계되어 있었고, 인간이 만든 장치보다 최적화되어 있었다.” 당신은 이 같은 말을 들었을 때, 한탄의 한숨이 절로 나오지 않겠는가? 이 가련한 과학자는 진화론에 철저히 세뇌 당해, 모순점을 볼 수 없는 것이다. 그는 연구 주제를 만들어주신 창조주에게 감사해야 한다. 그 대신 눈앞에 있는 놀라운 공학기술이 생각도 없고, 목적도 없고, 방향도 없고, 계획도 없고, 지성도 없는, 무작위적인 돌연변이들에 의해서 생겨난 것으로 생각하고 있었다. 진화론은 생체모방공학이 발전하는 데에 있어서 족쇄이다. 과학자들도 모방하려고 하는 최첨단 공학기술들이 모두 우연히 생겨났단 말인가? 생물학자들이여, 사람이 만든 장치보다 더 정교하고 최적화되어 있는 공학기술들이 한 두 개도 아니고 모두 무작위적인 과정으로 우연히 생겨날 수 있다고 정말로 생각하는가?

 


Further Reading
Giraffes
http://creation.com/giraffe-neck-design
Marvellous Meerkats
http://creation.com/meerkats
Heard of elephants?
http://creation.com/heard-of-elephants
Hippo habits
http://creation.com/hippo-habits
Evolution of the rhinoceros? Preposterous!
http://creation.com/evolution-of-the-rhinoceros-preposterous
Camels—confirmation of creation
http://creation.com/Camelsmdashconfirmation-of-creation
Dugongs: ‘sirens’ of the sea
http://creation.com/dugongs-sirens-of-the-sea
The Australian dingo: a wolf in dog’s clothing
http://creation.com/the-australian-dingo-a-wolf-in-dogs-clothing
Amazing armoured armadillos of the Americas
http://creation.com/amazing-armoured-armadillos-of-the-americas
The bamboozling panda
http://creation.com/the-bamboozling-panda
The Sulawesi Bear Cuscus
http://creation.com/the-sulawesi-bear-cuscus
The Colugo Challenge
http://creation.com/colugo
Aye-aye
http://creation.com/aye-aye
Spectacular, surprising seals
http://creation.com/spectacular-surprising-seals
Catching a kinkajou
http://creation.com/catching-a-kinkajou
Squirrels!
http://creation.com/squirrels
The opossum’s tale
http://creation.com/opossums
The platypus
http://creation.com/the-platypus
Dear deer—when white ‘mutants’ have a selective advantage
http://creation.com/white-deer
Bears across the world …
http://creation.com/bears-across-the-world
The Mole
http://creation.com/the-mole
Sea lilies and starfish—splendours of the sea
http://creation.com/sea-lilies-and-starfish-splendours-of-the-sea
Beetles … nature's workaholics
http://creation.com/beetles-natures-workaholics
Fascinating cuttlefish
http://creation.com/fascinating-cuttlefish
Bats—sophistication in miniature
http://creation.com/bats-sophistication-in-miniature
Rats: no evolution!
http://creation.com/rats-no-evolution
Frogs—Jeremiah was not a bullfrog
http://creation.com/frogs-jeremiah-was-not-a-bullfrog
Creation’s Crustaceans
http://creation.com/creations-crustaceans
Enter the sea dragon
http://creation.com/enter-the-sea-dragon
Sharks: denizens of the deep
http://creation.com/sharks-denizens-of-the-deep
Sharks and rays
http://creation.com/sharks-and-rays
Coral: animal, vegetable and mineral
http://creation.com/coral-animal-vegetable-and-mineral
Jellyfish
http://creation.com/jellyfish-clever-hunter
Ants—swarm intelligence
http://creation.com/ants-swarm-intelligence
The mysterious giant squid
http://creation.com/the-mysterious-giant-squid
Air attack
http://creation.com/Air-attack
Turtles
http://creation.com/turtles


번역 - 미디어위원회

링크 - http://crev.info/2014/05/life-shows-exquisite-engineering-and-optimization/ 

출처 - CEH, 2014. 5. 29.

미디어위원회
2014-06-03

딱따구리, 혈액응고, 분자모터를 모방한 생체모방공학 

(Three More Ways to Benefit from Nature’s Designs)

David F. Coppedge


      다른 크기 스케일로, 세 개의 완전히 다른 생물학적 메커니즘이 연구되었다. 모두 자연의 설계는 경이롭다는 것과 모방하기 어렵다는 것에 동의하고 있었다.


딱따구리의 충격 흡수기 : 미시시피 주립대학의 과학자들은 딱따구리(woodpecker)의 주둥이가 1,000G의 충격으로 나무를 쪼아대고 있지만, 뇌가 상하지 않는 이유를 이해는 데에 좀 더가까워지고 있다고, Science News(2014. 5. 6) 지의 한 기사는 보도하고 있었다. 그 기사에서 볼 수 있듯이 부리에 있는 케라틴(ker atin) 단백질은 물결 모양의 경로로 서로 맞물려(interlock) 있다. 이것은 충격 스트레스 동안에, 단백질들이 서로를 지나 미끄러질 수 있도록 허락하여, 일부 충격을 흡수한다. ”이미 딱따구리 머리의 구조는 충격 흡수제의 발명을 위한 설계에 영감을 주어왔다”라고 그 기사는 말한다. 이제 부리 자체 내에 들어있는 이 메커니즘은 충격 방지물질을 만드는 데에 기여할 것이라는 것이다. ”자동차 범퍼에 이를 구현해야 한다”라고 한 독자는 말했다.

혈액 응고를 모방한 플라스틱 : 단계적인 인체의 혈액응고(blood clotting) 가정은 마이클 비히(Michael Behe)가 1996년에 출간한 책 '다윈의 블랙박스(Darwin’s Black Box)”에서 지적했던 것처럼, ‘한 요소도 제거 불가능한 복잡성(irreducible complexity, 환원 불가능한 복잡성)의 한 예이다. 이제 BBC News(2014. 5. 9)는 혈액응고를 모방한 '자가 치료 플라스틱(self healing plastic)'에 대해서 기술하고 있었다. 일리노이 대학 연구자들이 개발한 이 새로운 플라스틱은 스스로 치유되는 휴대폰 스크린이나, 테니스 라켓의 발명으로 이어질 수 있다는 것이다. ”인간의 혈액 응고 시스템에서 영감을 얻은, 그 플라스틱은 손상된 부위에 치유 물질을 전달하는 모세혈관 네트워크를 포함한다”고 기사는 말한다. 사실 이것은 혈관 내에서 응고되지 않고, 혈액 흐름을 빠르게 멈추게 하도록 여러 성분들이 치밀하게 조절되는 혈액응고보다 훨씬 단순하다. 또한, 인공 물질은 느리게 복구되고, 원래 강도의 67% 정도로만 재생된다. 발명자들은 그들의 제품이 혈액의 능력에는 도달할 수 없음을 깨달았다 :

그러나 훨씬 더 유연한 복구 시스템을 위해서는 '진정한 재생'이 되는 미래 물질이 필요할 것이라고, 과학자들은 인정했다.

”손상이 예측 불가능하고 통제되지 않은 경우, 우회 채널 차단을 위해 충분한 혈관 적용범위와 중복을 제공하는 더 복잡하고 상호 연결된 혈관 네트워크가 필요할 것이다.” 화이트 교수와 그의 공동 저자는 밝혔다.

분자 바퀴 : 분자 수준에서 바퀴를 회전시키는 것이 얼마나 어려운 일일까? 정말 어려운 일이라고 서던 덴마크 대학의 보도 자료는 말하고 있었다. 그들의 인공 분자 기계의 부품을 회전시키려 하는 연구자들은, 대부분의 세포 과정에서 사용되는 '에너지 통화'인 ATP를 생산함으로써, 세포에 전력을 공급하는 회전 엔진인 ATP 합성효소(ATP synthase)에 대해 경탄하고 있었다. 

”이것은 당신이 인공적 분자기계에 대해 연구할 때, 영감을 받아 사용할 수 있는 고전적인 생물학적 분자기계이다.” 서던 덴마크 대학 물리 및 화학부의 박사 후 연구원인 씨셀 앤더슨(Sissel Stenbæk Andersen)은 말했다.

”우리는 궁극적으로 회전할 수 있고, 한 과정을 수행할 수 있는 인공적 기계를 만들려고 한다. 그것은 매우 낮은 기술이며 간단한 것처럼 보이지만, 그렇지 않다. 기계가 어떻게 회전하는지, 그리고 어떻게 그렇게 빨리 돌 수 있는 지를 추적하는 일은 정말로 하나의 거대한 도전이다. 우리가 미래의 분자기계로부터 혜택을 받기 원한다면, 우리는 회전과 속도를 통제할 수 있어야만 한다.” 씨쎌은 말했다.

그들은 이해하고 있는 중이라고, 보도 자료는 말했다. 하지만 여전히 갈 길이 멀다는 것이다.



다시 말할 필요가 있을까? 저희 글을 처음 읽는 분들을 위해, 다시 말하겠다. 현대의 과학자들도 모방하려는 최첨단 생체 기술이 목적도 없고, 방향도 없고, 생각도 없고, 계획도 없는 무작위적인 과정으로 우연히 생겨날 수 있었을까? 이 기사들 중에서 진화(evolution)는 어디에서도 언급되지 않고 있다. (유일한 예외는 BBC 기사의 끝부분에 등장하는 완전히 불필요한 쓸모없는 언급이다 : ”여기에 자연에서 진화했던 우아한 사례들이 해결책에 대한 영감을 불어넣고 있다.” 과학자들은 자신의 연구를 수행하는 데에 진화론의 어떠한 부분도 필요하지 않고 사용하지도 않고 있다. 기사의 끝부분에 등장하는 언급은, BBC가 지적설계 진영과 가깝지 않다는 것을 NCSE에 보여주기 위한 기자의 소망처럼 보인다.)

이것이 과학의 법칙이다 : 과학자들이 자연에 들어있는 설계를 더 자세히 들여다볼수록, 그들의 논의에서 다윈(Darwin)은 배제된다는 것이다. 생체모방공학(Biomimetics)은 과학의 관심을 설계로 되돌리는 데에 열쇠가 되고 있다. 그것은 프랜시스 베이컨과 현대과학의 다른 설립자들이 추구했던 것처럼, 과학이 인류의 발전에 기여하도록 하는 열쇠인 것이다. 그것은 과학이 다와인(Darwine)이라는 알콜 중독으로부터 치료되는 느린 과정인 것이다.


*참조 : 생체모방공학

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6487906&t=board


번역 - 미디어위원회

링크 - http://crev.info/2014/05/three-more-ways-to-benefit-from-natures-designs/ 

출처 - CEH, 2014. 5. 12.

미디어위원회
2014-05-26

경이로운 공학 기술이 수백만 년의 자연적 과정으로? 

: 생체 모방 공학자들의 논리적 오류

 (Millions of Years of Evolution Equal Engineering?)

by Brian Thomas, Ph.D.


      많은 연구자들이 생물들에 들어있는 설계를 모방하여 인공-설계의 혁신적 제품들을 만들어내고 있다. 인공-설계 제품들은 어떻게 존재하게 되었는가? 그것은 사람이 설계했기 때문이다. 그렇다면, 이 놀라운 설계가 들어있는 살아있는 생물들은 어떻게 존재하게 되었는가? 최근의 생체모방공학 연구자들은 그들이 모방하고자 하는 두 생물, 해마(seahorse)와 캥거루(kangaroo)의 기원을 설명할 때, 잘못된 논리적 오류를 범하고 있었다.

일 년 전 온라인 비디오에서, 캘리포니아 대학의 조안나 맥키트릭(Joanna McKittrick)이 이끄는 연구자들은 유연성과 견고성 사이에서 균형을 이루는 해마 꼬리의 놀라운 공학을 모방하려 하고 있었다. 그들은 해마의 갑옷을 모방하여 로봇 팔을 만들기를 희망하고 있었다.[1] 그것의 뼈 판들은 줄기 또는 산호와 같은 바다 아래의 물체를 붙잡을 때, 꼬리가 구부러지면서 민감한 내부 척추를 보호하기 위해서 서로의 위로 미끄러져 들어간다.

이러한 독창적인 해마의 갑옷은 어떻게 생겨난 것일까? 로이터 통신(Reuters)은 이렇게 보도하고 있었다. ”수백만 년 동안 일어났던 진화의 처음 과정처럼, 현대의 과학적 해결책은 근육으로 작용하는 폴리머에 연결된 인공적 뼈 판들을 만드는 것이다.”[1]

해마와 그들의 화려한 장갑 꼬리를 진화가 만들었다는 것을 그들은 어떻게 알았는가? 똑똑하고 교육 받은 공학자들이 의도와 지식을 가지고 올바른 재료들을 선택하고, 그들의 모양을 설계하여 만들고, 그들이 기능하도록 정확하게 조립했을 때 인공적인 꼬리 모델이 만들어지는 것이 아니겠는가? 진화는 결코 의도를 가질 수 없다. 의지, 계획, 결단... 등은 추정되는 진화의 과정이 아니다. 진화는 지성도 없고, 생각도 없고, 계획도 없고, 방향도 없다. 진화의 주메커니즘인 돌연변이는 복제 시에 발생하는 무작위적인 오류이다. 

마찬가지로, 그들은 그 과정이 수백만 년이 걸렸는지를 어떻게 알았는가? 오랜 시간의 자연적 과정으로 기계는 고장과 마모와 분해를 일으키지, 부품들이 만들어지고, 조립되고, 완성품이 만들어지는 것이 아니다.

최근에 독일 공학자들은 로봇 캥거루를 만들었다. 온라인 비디오에서 로봇 캥거루는 살아있는 캥거루의 우아한 운동과 비교했을 때, 기대만큼 잘 기능하지 못했다. 그럼에도 불구하고, 연구팀은 그 로봇을 만들기 위해서 문제 해결 기술을 사용했다는 것이다. BBC News 는 말했다 : ”공학자들에 의하면, 착륙 시에 균형을 유지하는 것은 엉덩이와 꼬리의 미세하게 조정된 움직임을 의해서 달성된, 진정한 기술적 도전이었다.”[2] 

만약 이 열등한 로봇 복제품에서도 미세하게 조정된 문제 해결 능력이 필요했다면, 우수한 살아있는 원래의 캥거루가 만들어지기 위해서도 유사한 기술이 필요하지 않았겠는가? 생체모방공학의 과정을 설명하면서, BBC News는 말했다. ”그것은 기본적으로 수백만 년에 걸친 진화와 자연선택을 통해 발생한 목말(piggyback)이다.”[2]

같은 논리적 오류가 다시 나타난다. 진화와 자연선택은 연구를 수행할 수 없다. 단지 사람만이 연구를 수행할 수 있다. 과학자들은 그것을 인정해야만 한다. 시간이 지남에 따라 자연적 과정은 설계된 구조를 훼손시킨다. 새 차는 헌 차가 되고, 유전체는 손상이 축적된다. 캥거루의 엉덩이와 꼬리와 같은 구조의 설계가 수백만 년이 흐른 뒤에 우연히 생겨났다는 설명은 매우 비논리적인 것이다.[3]  

독일 공학자들은 점프하는 로봇을 만들기 위해서 고철 더미에서 무작위적으로 금속들을 수집하지 않았다. 그리고 무작위적 금속 쓰레기들도 수백만 년 후에는 로봇이 아니라, 먼지로 변해있을 것이다. 대신에 공학자들은 신중하게 계획하고 설계하여 자신들의 점핑 로봇을 제작했다. 마찬가지로, 생물 캥거루도 어떤 지적 존재에 의해서 계획되고 설계되어 출현하게 되었다는 것을 인정하는 것이 그렇게도 힘든 일인가?

분명히, 진화론에서 '수백만 년'이라는 연대는 창조주를 대신하고 있었다. 크리스천들은 창조주 하나님이 실제 문제 해결자이시며, 재료공학 전문 지식을 가지고 계시는 분임을 인정하는 사람들이다. 그러나 창조주를 인정하지 않고, 수백만 년의 장구한 시간이 그러한 경이로운 공학적 기술을 만들어냈을 것이라고 믿는 진화론자들은, 치명적인 논리적 오류를 범하고 있는 것이다. 



References
1. Cleary, T. Scientists come to grips with seahorse armor. Reuters. Posted on reuters.com June 17, 2013, accessed May 1, 2014.
2. Shaw, D. Animal robotics: German engineers make bionic kangaroo. BBC News. Posted on bbc.com April 4, 2014, accessed May 1, 2014.
3. See Sanford, J. S. 2005. Genetic Entropy and the Mystery of the Genome. Lima, NY: Ivan Press.
 

*관련 기사 : 해마 꼬리에서 영감을 얻은 로봇 설계 기술 (2015. 7. 7. 로봇신문) 

http://www.irobotnews.com/news/articleView.html?idxno=5239

캥거루 로봇, 점프가 ‘살아있네’ (2014. 4. 8. 동아사이언스)
獨 연구진, 한번에 80cm 뛰는 야생캥거루 닮은 로봇 개발
https://www.dongascience.com/news/view/4207

로봇의 진화…‘캥거루 로봇’까지 등장 (2014. 4. 5. ZDNet Korea)
http://www.zdnet.co.kr/news/news_view.asp?artice_id=20140405203141

생물체 모방 로봇 쏟아진다  (2015. 12. 10. 머니투데이) 

https://news.mt.co.kr/mtview.php?no=2015121007184195800&vgb=column&code=column310


번역 - 미디어위원회

링크 - http://www.icr.org/article/8065/ 

출처 - ICR News, 2014. 5. 14.

미디어위원회
2014-05-20

물 위에서 걸을 수 있도록 하는 설계 

: 소금쟁이 다리에서 발견된 최적화된 기하학

 (Designed to Walk on Water)

Brian Thomas Ph.D


     소금쟁이(water striders)라는 곤충은 우아하게 물 표면을 가로지르며 그들의 삶을 살아간다. 중국 과학자들은 물 위를 걷기 위해 곤충의 작은 다리털에 완벽하게 어울리는 몇몇 특별히 디자인된 설계 사양을 발견했다.


소금쟁이는 대게 15mm 보다 작다. 하지만 '강모(setae)‘라 불리는 다리털과, 특별한 공식으로 특화된 길이, 간격, 배치 각도가 없었다면, 이 작은 생물도 가라앉을 것이다.

Proceedings of the Royal Society A 지에 게재된 논문의 선임저자인 북경대학의 후이링(Huiling) 교수는 ABC Science에서 말했다. ”사실 털 표면의 물 반발력은 미세한 스케일에서 털의 크기, 간격(공간적 배치), 방향에 따라 달라진다.”[1, 2]


그러면, 소금쟁이 다리 강모의 이상적인 배열은 어떻게 비교되었는가? ABC Science에 따르면, ”소금쟁이 다리털과 파리 날개털의 간격은 최적화되어 있어서, 물 표면을 통과하지 않을 정도로 충분히 가까우면서도, 비효율적 정도로 함께 붙어 있지는 않았다.”는 것이다.[2]


강모가 함께 가까이 뭉쳐있는 것은, 이동을 위해 다리를 들어 올릴 때 다리가 너무 강하게 물 표면에 달라붙게 되는 원인이 될 수 있다. 그래서 각각의 강모 사이의 간격은 골디락스 표준(Goldilocks standard)으로 세팅되어야 하는 것이다. 즉, 너무 멀어도 안 되고(소금쟁이가 가라앉고), 너무 가까워서도 안 된다(이동할 수가 없다). 강모에서 다른 특화된 것은 무엇일까?


털들은 완벽한 간격을 가지고 있어야할 뿐만 아니라, 그 크기와 각도에 있어서, 중력, 구조적 건전성, 모세관 힘 등과 딱 맞는 균형을 이루고 있어야 한다. 연구자들은 ”우리의 분석은 소금쟁이의 다리에 있는 강모 또는 일부 곤충의 날개는 그러한 최적화된 기하학을 가지고 있음을 분명히 보여준다.”고 썼다. 


설계자 없이 이러한 설계적 특성을 설명하기 위해서, 진화론자들은 힘든 과제를 떠안게 되었다. 방향도 없고, 목적도 없고, 지성도 없는, 무작위적인 돌연변이들이 일어나 이러한 설계적 특성을 우연히 만들어낼 수 있었을까? 그리고 돌연변이가 하나씩 하나씩 생겨나 마침내 소금쟁이가 물 위를 걷게 되었다고 설명할 수 없다. 왜냐하면, 소금쟁이에서 세 특화된 부분(크기, 각도, 공간적 배치)이 동시에 생겨나지 않았다면, 그 곤충은 가라앉아 죽었을 것이기 때문이다. 자동차, 비행기, 보트 등에서 보듯이, 여러 개의 특별한 부품들이 동시에 모두 존재해야만 그 기계는 기능을 발휘한다. 부품이 하나씩 생겨나 아직 완전한 기능을 하지 못하는 기계는 거추장스러울 뿐이다. 그렇다면 왜 이러한 경이로운 곤충에서는 다르게 설명되고 있는 것인가?



References
1. Xue, Y., et al. Enhanced load-carrying capacity of hairy surfaces floating on water. Proceedings of the Royal Society A. Published online before print, March 5, 2014.
2. Nogrady, B. Leg hairs hold secret to walking on water. ABC Science. Posted on abc.net on March 5, 2014, accessed March 18, 2014.


*관련기사 : 2cm 몸으로 14cm 점프 ‘소금쟁이 로봇’ (2015. 7. 31. 동아사이언스)

                   자연에서 '영감'을…생체모방 로봇 (2017. 9. 7. YTN 사이언스)

                   해양오염 현장에서 활약할 소금쟁이 로봇 (2021. 12. 21. ScienceTimes)


번역 - 미디어위원회

링크 - http://www.icr.org/article/8057/ 

출처 - ICR News, 2014. 4. 28.

미디어위원회
2014-04-25

고양이의 수염과 일각고래의 엄니는 감각기관. 

그리고 바다뱀, 초파리, 캐나다두루미의 놀라운 특성들. 

(Cat Whiskers and Narwhal Tusks: Why Things Are)

David F. Coppedge


     동물 세계에서 잘 설계된 것처럼 보이는 독특한 기능들이 계속해서 발견되고 있다.

고양이 수염의 기능 : 고양이 수염(cat whiskers)은 사람의 턱수염이나 콧수염처럼 단지 외모를 위한 것이 아니다. 고양이, 쥐, 몇몇 포유류에서 그 수염들은 수염 모낭내의 민감한 신경세포(neurons)와 연결되어 있다고, Live Science(2014. 3. 19) 지는 보도했다. 고양이는 종종 어둠 속에서 물체를 탐사하기 때문에, 수염은 자신의 환경에 대한 촉각 감도를 확대하여 제공한다. ”고양이의 수염(whiskers, or vibrissae)은 고양이가 어둠 속에서 보는 것과 나아가는 것을 도와주는 잘 다듬어진 감각 도구이다.”라고 엘리자베스 팔레르모(Elizabeth Palermo)는 썼다. 주의 깊게 당신의 고양이를 살펴보라. 당신은 고양이의 귀, 눈썹, 앞다리에서도 그것들을 찾을 수 있을 것이다. ”물체에 수염이 접촉하면서, 고양이는 어두운 곳에서도 물체의 정확한 위치, 크기, 질감을 감지할 수 있다.” 그녀는 계속했다. ”이 특성은 고양이가 좁은 공간 내에 들어갈 수 있는지 여부를 파악하는 데에 유용하다. 또한 수염은 공기 흐름의 변화를 감지하게 해주어, 위험을 감지하는 데에 도움을 준다.”


일각고래 엄니의 기능 : 일각고래(narwhal, 북극고래의 한 종류)의 엄니(tusk)는 2.7m 길이로 자랄 수 있는데, 이 이빨은 감각기관일 수 있다고, National Geographic(2014. 3. 18)는 보도했다. 뿔처럼 보이는 길고 뾰족한 엄니는 수컷에서 가장 큰데, 그 고래를 바다 일각수(marine unicorn)처럼 보이게 만들고 있다. 엄니의 목적에 대해서는 다양한 이론들이 있다. 대부분의 이론들은 그 엄니가 성적 과시(sexual display)와 암컷을 유혹하기 위한 것이라는 것이다. 왜냐하면 암컷은 단지 작은 엄니를 가지고 있기 때문이다. 다른 이론들은 얼음 송곳이나 음향 탐지를 위한 용도라는 것이다. 이제 한 새로운 이론은 민감한 혈관이 엄니 끝부분까지 나있는 것을 고려하여, 엄니는 아마도 수온 또는 염분 농도를 측정하는 감지기(sensor)라고 제안했다. 일각고래는 연구하기가 어렵기 때문에, ”우리는 고래가 엄니를 어떻게 사용하는 지를 확실히 알 수는 없다”고 그들은 말했다.

*관련기사 : ‘바다의 유니콘’ 일각고래 ‘뿔’에 얽힌 비밀 풀렸다(2014. 3. 19. 나우뉴스)
http://nownews.seoul.co.kr/news/newsView.php?id=20140319601013

2시간17분간 숨 안쉬고 3㎞ 다이빙?…민부리고래 잠수왕 등극(2014. 3. 27. 국제신문)
http://www.kookje.co.kr/news2011/asp/newsbody.asp?code=0400&key=20140327.99002172457

Finally! Scientists have discovered what narwhal tusks are for (2020. 3. 18. BBC News)

https://www.bbc.co.uk/newsround/51946908


바다의 낙타인 바다뱀 : 바다뱀(sea snakes)은 물에 둘러싸여 있음에도, 신선한 물을 먹기 위해 목이 마르다. 티아 고세(Tia Ghose)는 Live Science(2014. 3. 18) 지에서 그 생물을 '바다의 낙타(camels of the ocean)'라고 부르면서, 바다뱀이 물을 마시기 전까지 6~7개월을 견딜 수 있음을 보고했다. 바다뱀은 신선한 물을 먹기 위해 땅으로 돌아가거나, 비가 올 때 바다 표면에서 물을 찾는다는 것이다. 고래나 바다표범과 같은 바다생물과 다르게, 바다뱀은 바닷물을 처리하는 염류선(salt glands)이 없다. 그러나 그들은 물고기를 사냥하기 위해 바다로 나가 수 개월을 보낼 수 있다.

*관련기사 : 바다에 살면서 바닷물 안 먹는 바다뱀의 비밀 (나우뉴스. 2014. 3. 24.)
http://nownews.seoul.co.kr/news/newsView.php?id=20140324601016


초파리의 놀라운 비행 : 5mm의 작은 초파리는 강풍 속에서도 안정적인 비행을 한다고, PNAS(2014. 3. 17) 지의 한 논문은 보고하고 있었다. 초파리는 비행할 때, ”자신의 안테나로 바람을 감지하여 시각-기반 속도 컨트롤러를 안정화시킨다.” 연구자들은 그들의 비행 민첩성을 설명하기 위해서 특수 실험을 실시했다. ”초파리의 안테나 위에 있는 물리적 자극 수용기는 직접적으로 지상속도를 측정할 수 없다. 하지만, 더 빠르게 대기 중 기류속도의 변화는 감지할 수 있음”을 발견했다. 초파리는 날개 근처에 있는 '홀터스(halter)'라는 신경기관을 이용해 비행 정보를 감지하는 것으로 나타났다. ”양쪽 감각으로부터의 정보를 통합하여, 초파리는 돌풍 등과 같은 동요가 있어도 비행속도를 안정적으로 유지하고 있다”는 것이다.

*관련기사 : 초파리 강풍 속 놀라운 비행기술…원리 찾았다 (2014. 3. 29. YTN)
http://www.ytn.co.kr/_ln/0105_201403290832555915

강풍 속 초파리 비행원리, 5mm 곤충의 '엄청난 비밀': 인간과 달라…뇌가 아닌 신경기관이 감지 '대단' (2014. 3. 29. The Fact)   http://news.tf.co.kr/read/life/1343827.htm

강풍 속 초파리 비행원리, '이래서 파리채를 잘 피하는구나'(2014. 3. 29. 데일리안)
http://www.dailian.co.kr/news/view/429946

강풍 속 초파리 비행원리 ‘홀터스’ 신경기관의 비밀 (2014. 3. 29. 매일경제)
http://news.mk.co.kr/newsRead.php?year=2014&no=492051



캐나다 두루미의 항해 : ”비행: 천재적인 새들”에서 간략하게 언급된 캐나다 두루미(sandhill cranes)는 많은 지역을 자기 영역으로 살아가는 크고, 늘씬한 새이다. Live Science(2014. 3. 2)의 사진 갤러리는 다양한 위치에서 그들을 보여주면서, 그들의 '놀라운 항해'에 관해서 말하고 있었다. 긴 다리, 긴 목, 긴 부리를 가지고, 그들은 춤을 추며, 짝짓기를 하며, 여러 지역에서 발견된다. 그들은 멕시코에서 캐나다로, 플로리다에서 캘리포니아로 하루에 640km를 이동한다. ”캐나다 두루미는 지구상에서 알려진(오늘날 살아있는 종들에서) 가장 오래된 조류 종이라는 몇몇 증거들이 있다.” 린다와 딕(Linda and Dick Buscher)은 언급했다. ”네브래스카 플랫 강(Platte River)을 따라 발견된 캐나다 두루미 화석은 1천만 년 전의 것으로 평가되었는데, 현대의 캐나다 두루미와 동일한 것으로 평가되었다.”



만약 캐나다 두루미가 1천만 년 동안 진화되지 않았다면, 진화론은 다시 한번 틀렸음이 분명하다. 이것보다 짧은 기간 동안에 사람은 엄청난 변화(진화)를 일으켰다고 주장되고 있지 않는가? 왜 캐나다 두루미에서는 변화가 없었는가?

지구 행성에서 각 동물들은 더욱 자세히 연구될 필요가 있다. 생물들의 이 놀라운 기능들이 복제 오류인 무작위적인 돌연변이들로 모두 우연히 생겨났다는 것인가? 우리가 더 많은 것을 알게 되면 될수록, 각 생물들은 방향도 없고, 목적도 없고, 지성도 없는, 무작위적인 돌연변이들로 우연히 생겨났다기 보다 설계된 것처럼 보인다. 이제 진화론은 폐기될 시기가 되었다.


번역 - 미디어위원회

링크 - http://crev.info/2014/03/cat-whiskers-and-narwhal-tusks/ 

출처 - CEH, 2014. 3. 24.

미디어위원회
2014-04-22

문어 지능의 진화?

김철중


      문어(octopus)는 발이 8개 달린 연체동물로 일반적으로 무척추동물은 무뇌 동물이라고 오해하는 사람들도 있지만, 문어는 뇌가 있을 뿐 아니라, 무척추동물계의 천재라고 불릴 정도로 지능이 높다. 문어의 뇌는 50~75개 정도의 엽(lobe)들을 가지고 있고, 적어도 생쥐(mouse)의 뇌만큼이나 많은 뉴런(대략 1억 개)들을 가지고 있다. 문어 다리는 약 5천만 개의 뉴런으로 구성된 신경 조직에 의해 통제되는데, 문어 다리는 뇌의 명령 없이도 미각과 촉각 활동을 하고, 뇌가 방향을 지시하지 않아도 유연하게 구부려 움직이기 때문에, 문어의 다리는 잘린 다음에도 살아 있을 때처럼 움직일 수 있다. 다리로 병뚜껑을 열 수도 있고, 반복에 의해 학습하거나 흉내 내는 능력도 있다. 심지어 장난도 친다고 한다. 문어는 위장술의 달인이다. 바위에 붙으면 바위 색으로 변하고, 산호 옆에 있으면 산호처럼 보일 정도로 변화무쌍하다. 천적이 나타나면 두 다리로 밑바닥을 걸으면서, 여섯 개의 다리로는 공처럼 몸을 말아 마치 코코넛처럼 보이게 한다. 흐느적거리며 움직이지만, 도망치는 속도가 다리를 모두 사용하여 이동할 때보다 훨씬 빠르다.


2010년 남아공 월드컵 당시 점쟁이 문어 ‘파울’이 화제가 된 적이 있었다. 독일의 승패를 모두 맞춰서(심지어는 독일의 준결승 패배와 스페인의 우승까지) 적중률 100%를 자랑했던 파울의 신통력에 대해 수학자들과 생물학자들은 그 ‘족집게’ 예언 능력이 어디에서 나오는지 분석하기 시작했다. 수학자들은 ‘파울’의 정확한 예측은 초능력 때문이라기보다는, 확률의 우연의 연속일 가능성이 높다고 판단했고, 어떤 생물학자들은 문어가 색맹이라 특정색의 음영에 대한 선호 때문이라고 밝히기도 했다.



최근 진화론자들은 문어가 물고기들을 잡기 위하여 더 큰 뇌가 필요했다고 말하고 있다. 그래서 문어는 자신의 뇌를 동물계에서 가장 복잡한 뇌들 중의 하나로 진화시켰다고 주장한다. 문어, 오징어 등과 같은 두족류는 약 5억 년 전인 캄브리아기의 바다를 지배하고 있었으며, 그들의 세계는 캄브리아기의 생물학적 빅뱅과 함께 크게 변화되었고, 물고기의 조상을 포함한 지구상 생명체들의 다양한 변화들이 빠르게 일어났다는 것이다. 그런데 갑자기 두족류는 맛있는 물고기의 출현이라는 새로운 기회를 갖게 되었고, 처음으로 심각한 경쟁과 강력한 포식동물들을 만나게 되었으며, 이 때문에 그들은 서둘러서 영리해져야만 했다는 것이다. 그래서 오늘날의 문어가 어떠한 무척추동물보다 가장 복잡한 뇌를 갖게 되었다는 것은 놀라운 일이 아니라고 주장하고 있다.


이 기적적인 이야기를 받아들이기 위해서는, 먼저 뇌가 없는 문어가 캄브리아기 바다에서 어떠한 조상도 없이 갑자기 존재했다고 믿어야 한다. 그리고 복잡한 뇌가 없던 문어가 물고기가 먹기 좋다는 것을 이해했다고 믿어야 한다. 복잡한 뇌가 없던 문어가 어떻게 물고기를 잡기 위해서 발달된 뇌가 필요한 줄을 알았을까? 진화론은 하나님 없이 모든 것을 설명하려고 하다 보니, 이와 같은 황당한 이야기를 지어낼 수밖에 없는 것이다.



*문어의 경이로운 위장술 (youtube 동영상)
1) https://www.youtube.com/watch?v=eS-USrwuUfA

2) https://www.youtube.com/watch?v=t-LTWFnGmeg

3) https://www.youtube.com/watch?v=os6HD-sCRn8

 

*문어의 놀라운 지능 (youtube 동영상)
1) https://www.youtube.com/watch?v=T8cf7tPoN5o

2) https://www.youtube.com/watch?v=r1bxBmJAAJE

3) http://www.youtube.com/watch?v=AP_dpbTbess&feature=related

4) http://www.youtube.com/watch?v=9kuAiuXezIU

 

*관련기사 : 강아지 지능의 문어, 수명은 고작 2년 ‘가문박명’ (2011. 10. 1. 동아일보)
http://news.donga.com/It/3/08/20110930/40749068/1

개와 문어 누구 머리가 좋을까 (2012. 2. 24. 한겨레)
무척추동물 문어도 사람 얼굴 인식, 곤충과 조류도 비슷한 능력
http://ecotopia.hani.co.kr/44677


출처 - 대전지부 계간지 “GooD” 33호 (2014년 4월)

미디어위원회
2014-04-15

모든 발명에 영감을 주고 있는 생체모방공학 

: 파리, 폐, 광합성, 굴 근육, 진주층, 찌르레기, 뱀, 뇌, 폭격수 딱정벌레, 먹장어, 나방의 모방

(Biomimetics Is All About Design Inspiration)

David F. Coppedge


      과학자들이 생물을 모방하려고 하는 이유는 무엇일까? 생물들이 잘 설계되지 않았다면, 그것을 모방하려고 몰려들지 않을 것이다.

여러 편의 과학 논문 및 뉴스 기사들은 자연을 모방하는 것(생체모방공학, biomimetics)이 수년 후에는 획기적 발명들을 쏟아내는 과학적 노다지가 될 것임을 보여주고 있었다. 다음은 다양한 생물들로부터 생물학적 설계를 모방하고 있는 최근의 사례들이다 :

1. 검정파리(Blowfly)는 미니 무인항공기에 영감을 주고 있다. (2014. 3. 25. Live Science, Evolution News & Views)

2. 사람의 폐(lungs)는 깨지지 않는 보안 암호에 영감을 주고 있다. (2014. 4. 3. Science Daily)

3. 광합성(photosynthesis)은 연료 전지에 영감을 주고 있다. (2014. 3. 28. PhysOrg)

4. 굴(oyster)은 방풍유리 및 군사적 방호복에 영감을 주고 있다. (2014. 3. 31. Live Science)

5. 생물학적 근육(muscle)은 공학적 근육에 영감을 주고 있다. (2014. 3. 7. PNAS, 2014. 3. 31. Medical Xpress)

6. 진주층(mother-of-pearl)은 슈퍼 강력 소재에 영감을 주고 있다. (2014. 3. 24. Science Daily)

7. 찌르레기 떼(starling murmurations)는 학생의 무인항공기에 영감을 주고 있다. (2014. 3. 27. PhysOrg)

8. 하늘을 나는 뱀(flying snakes)은 활강용 의복에 영감을 주고 있다. (2014. 4. 1. Live Science)

9. 인간의 뇌는 빛-기반 컴퓨터 칩 개발에 영감을 주고 있다. (2014. 3. 28. Science Daily)

10. 폭격수 딱정벌레(Bombardier beetle)는 자동현금인출기 보호 장치에 영감을 주고 있다. (2014. 3. 27. PhysOrg)

11. 먹장어의 점액(Hagfish slime)은 강인한 섬유(실)에 영감을 주고 있다. (2014. 4. 4. Science Daily)

12. 나방의 눈은 태양 전지판의 눈부심 방지 코팅에 영감을 주고 있다. (2014. 4. 4. Science Daily)

이들 기사에서 가장 흔한 공통적인 단어는 '영감을 주고 있다(inspire)'라는 단어이다. 과학자들이 생물체를 보면서 영감을 받는 이유는 무엇인가? 그것은 생물에서 유용한 설계를 찾아낼 수 있기 때문이 아닌가? 최고의 지식을 가진 과학자들이 모방하기를 원하는 최첨단 기능들이 모두 복제 실수인 무작위적인 돌연변이들에 의해서 우연히 만들어졌을 것이라는 이론이 합리적일 수 있을까?  



생체모방공학의 혁명은 여전히 뜨겁다. 당신의 현명한 학생들을 이 운동에 참여시키라. 그것은 진화론의 마지막이 될 것이며, 세상에 풍성한 유익함을 가져다 줄 수 있는 설계-기반의 새로운 사고의 시작이 될 것이다.

연습 문제 : 이 기사들 중에 진화가 언급되어 있는 글이 있는가? 진화론은 설계된 기능을 모방하는 작업과 어떤 관계가 있는지 논하여 보라.


*참조 : 생체모방공학

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6487906&t=board


번역 - 미디어위원회

링크 - https://crev.info/2014/04/biomimetics-design-inspiration/

출처 - CEH, 2014. 4. 8.



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광