mobile background

LIBRARY

KOREA  ASSOCIATION FOR CREATION RESEARCH

창조설계

창조과학미디어
2017-10-02

3억 년 전의 현대적인 딱정벌레의 발견으로

진화론자들은 당황하고 있었다.

(A 300 Million-Year-Old Fully Modern Beetle Causes Astonishment)

by Jerry Bergman, PhD



   새롭게 발견된 한 딱정벌레(beetle)는 진화론자들을 정말로 괴롭히고 있었다. 독일 예나(Jena)에 있는 프리드리히실러 대학(Friedrich-Schiller-Universitaet)의 과학자들의 연구 보고에 의하면, 현대 딱정벌레와 매우 유사한 0.5cm 길이의 딱정벌레 화석은 "곤충학자와 고생물학자들을 모두 깜짝 놀라게 만들었다"는 것이다.[1] : "일찍이 발견된 것 중 가장 오래된 것으로 알려진 이 딱정벌레는 이들 곤충 그룹의 초기 진화에 완전히 새로운 빛을 비춰주고 있다". Journal of Systematic Palaeontology 지에 실린 이 논문은, 호주 벨몬트(Belmont)에 있는 이전 습지대에서 발견된 화석화된 딱정벌레에 관한 것이었다.

이전까지 알려진 딱정벌레 화석들은 완전히 경화되지 않은 겉날개(wing cases, elytra), 작은 결절들로 조밀하게 뒤덮인 몸체 표면 등과 같은 원시적 특성으로 판단되는 일련의 모습들을 가진 딱정벌레 계통에 속하는 것들이었다. 이들 두 특성은 현대의 딱정벌레와 매우 다른 특성이다. 현대의 딱정벌레들은 완전히 경화된 겉날개를 가지고 있으며, 몸체 표면은 대체로 매끄럽다.

문제는 3억 년 된 딱정벌레에서 이러한 매우 현대적인 특성들이 발견되었다는 것이다. 더군다나, 고대 딱정벌레의 이동에 관여하고 있는 가슴 부분은 구슬 모양의 끈을 닮은 더듬이와 더듬이 홈(antennal grooves)을 포함하여, 현대적 특성들을 보여주고 있었다는 것이다.[2] 딱정벌레는 유별나게 단단한 외골격으로 인해, 다른 많은 곤충들보다 화석기록에 잘 보존되어 있다.[3] 이러한 현대적 특성들은 갑작스런 화산재에 뒤덮여버린 완전한 "스냅사진"의 딱정벌레 화석에 대해, 컴퓨터 3D 모델을 사용한 정교한 재구성을 통해 밝혀졌다. 많은 세밀한 부분들이 보존되어 있었고, 결과적으로 그 곤충에 대한 상세한 연구가 가능할 수 있었다. 조상의 특성과 현대의 특성을 같이 갖고 있었기 때문에, 이 딱정벌레는 오늘날의 분류 방법인 딱정벌레의 네 하위 계통 모두에 적합하지 않았다. 따라서 일부 진화론자들은 진화계통나무가 크게 수정되어야한다고 결정했다.

진화론자들이 갖게 된 문제는, 고대 멸종된 딱정벌레들이 발견되던 동일한 지질학적 지층에서 한 마리의 현대적 딱정벌레가 발견되었다는 것이다. 이것은 3억 년 전에 죽은 것으로 믿어지고 있던 동물 화석 옆에서, 완전히 현대적인 서양인의 유골을 발견한 것과 같다. 이것은 화석의 연대측정이 매우 부정확하거나, 현대 및 원시 딱정벌레의 특성들이라는 진화론자들의 주장이 완전히 잘못되었음을 가리킨다. 나는 아래에서 세 번째 가능성을 논의하려 한다.

고대 딱정벌레와 현대 딱정벌레의 차이는 그들의 생활 방식의 차이 때문일 수 있다. 새롭게 발견된 딱정벌레는 대부분의 동시대의 딱정벌레들처럼 나무껍질 아래에서 살지 않았다. 대신, 그 딱정벌레는 식물의 표면에 살았고, 따라서 이 시기에 살고 있는 다른 딱정벌레들보다 더 많이 대기에 노출되었다. 이것은 완전히 경화된 겉날개와 매끄러운 몸체 표면을 설명해줄 수 있다.

이 설명은 가장 논리적인 것으로 보이며, 원시적 특성 및 현대적 특성이라는 판단은 과학자의 결론을 왜곡시킨 것처럼 보인다. 우리는 단순히 생활방식의 적응 차이로 인해 달라진, 서로 다른 두 딱정벌레를 보고 있는 것이다. 그들은 지구상에 있는 대략 35만 종의 알려진 딱정벌레 종의 두 가지 다른 유형일 수 있으며, 아직 발견되지 않은 수천 종의 딱정벌레에서도 그러할 수 있다. 오늘날 딱정벌레는 현재 지구상에 알려진 모든 생명체의 약 25%를 차지한다.


References

1. Friedrich-Schiller-Universitaet Jena. “300 million-year-old ‘modern’ beetle from Australia reconstructed.” ScienceDaily, 24 July 2017.

2. Evgeny Viktorovich Yan, John Francis Lawrence, Robert Beattie, Rolf Georg Beutel. At the dawn of the great rise: †Ponomarenkia belmonthensis (Insecta: Coleoptera), a remarkable new Late Permian beetle from the Southern Hemisphere. Journal of Systematic Palaeontology, 2017; 1 DOI: 10.1080/14772019.2017.1343259.

3. Evgeny Viktorovich, 2017. p.4.


출처 : CEH, 2017. 10. 1.

주소 : https://crev.info/2017/10/fossil-modern-beetle-astonishment/

번역 : 미디어위원회

미디어위원회
2017-09-06

구조색은 다양한 동물들에서 발견되고 있다. 

: 경이로운 나노구조가 여러 번 생겨날(수렴진화) 수 있었는가? 

(Multiple Independent Animal Types Use Structural Color)

David F. Coppedge 


      이 현상은 나비, 물고기, 새, 뱀 등에서 발견되며, 과학자들은 그들의 비밀을 모방하려고 서두르고 있었다.

The Conversation(2017. 7. 21. 사진과 동영상을 볼 수 있음) 지에서 콜린(Colin Hall)과 에릭(Eric Charrault)은 구조색(structural color)을 모방하기 위한 과학자들의 열풍을 설명하고 있었다. 이것은 색소로 만들어지는 색깔이 아니다. 나노미터 크기의 구조가 교묘한 방법으로 빛의 일부 파장을 강화시키고 다른 파장을 약화시킨다. 부딪친 빛의 99.6%를 흡수하는 가장 검은 구조색인, 벤타블랙(Vantablack)을 제작하는 방법은 공학기술의 하나의 업적이 되고 있다.

원근법으로 비유하면, 직경 1m의 나무들로 이루어진 숲을 생각할 때, 이 나무들은 약 1km의 높이가 될 것이다. 이 높은 나무들로 울창한 숲에 떨어진 빛은 주변으로 흩어져 거의 완벽하게 흡수된다.

새로운 구조색을 만들어보려는 최첨단 시도에 대한 기사에서, 이 기술을 이미 사용하고 있는 매우 다양한 동물들의 사진과 설명을 포함하고 있었다 :

▶ 나비(butterflies)는 인편(scale)에서 무지개 빛의 색깔을 만든다. (see 6/15/2010)

▶ 한 뱀(snake)은 자연에서 발견되는 가장 검은 비늘을 갖고 있다.

▶ 은빛의 측면을 가진 정어리(sardines).

Live Science(2017. 7. 25) 지는 또 다른 비밀을 공개하고 있었다 : ”나비 날개의 광학은 밝고 사실적인 홀로그램(holograms)을 저렴하게 만들 수 있도록 해준다.” 콘서트, 영화, 신용카드에서 볼 수 있는 흐릿한 홀로그램이 이제는 훨씬 다채롭고 명료하게 나타날 수 있다는 것이다. 데이비드 루스(David Roos)는 나비 날개의 인편에서 나노구조의 모방을 보고하고 있었다.



우리는 새들, 거미, 딱정벌레, 포유동물 등이 ‘구조색(structural colors)’ 또는 '광결정(photonic crystals)'을 사용하고 있다는 보고를 이전부터 해왔다.(6/05/2008). 이들 다양한 동물들은 진화계통나무에서 서로 멀리 떨어져 있는 동물들이다. 그리고 진화계통나무 상에서 이들 동물들 사이의 많은 중간동물들은 구조색을 가지고 있지 않다. 그러므로 그들의 구조색은 한 공통조상으로부터 물려받은 것이 아니다. 진화론적으로 여러 다른 종류의 동물들에서 나타나고 있는 이 구조색을 설명할 수 있는 방법은 무엇인가? 유일한 방법은 그것들이 각기 독립적으로 여러 번 진화되었을 것이라고(수렴진화) 주장하는 것이다. 과학자들이 모방하기를 원하는, 경이로운 나노기술이 무작위적인 돌연변이들로 우연히 한 번 생겨났을 것이라는 주장도 신뢰할 수 없어보이는데, 그러한 일이 여러 번 일어났을 것이라는 설명이 과학적인 설명이 될 수 있을까? 진화론을 믿기 위해서는 엄청난 믿음이 필요하다. 그 원인은 당신도 짐작했듯이 지적설계(intelligent design)를 가리킨다. 


번역 - 미디어위원회

링크 - https://crev.info/2017/08/multiple-independent-animal-types-use-structural-color/

출처 - CEH, 2017. 8. 24.

미디어위원회
2017-08-14

순록의 눈이 겨울에 파란색으로 변하는 이유는? 

(Why reindeer eyes turn blue in winter)

David Catchpoole 


      황금색을 띠는 북극 순록(caribou, Rangifer tarandus)의 눈(eye)은 겨울에 짙은 파란색으로 변한다. 런던대학의 신경과학자 글렌 제프리(Glen Jeffery)는 2001년부터 이것과 관련된 연구를 수행해왔다. 그는 이러한 색깔 차이를 '극적'이라고 묘사하면서, ”무슨 일이 일어나고 있는지, 그리고 그 이유가 무엇인지를 알아내는데 무려 12년이 걸렸다”고 말했다.[1, 2]


순록 눈의 색깔 변화는, 순록이 망막 뒤에 있는, 흔히 ”고양이 눈”으로 알려진, 반사표면인 휘막(tapetum lucidum, TL)에서 반사파장이 계절에 따라 바뀌기 때문인 것으로 밝혀졌다.[3]

거의 하루 종일 낮이 지속되는(해가 지지 않는) 북극의 여름 동안, 휘막에서 반사되는 빛은 대부분이 망막을 통해 직접 반사되기 때문에 황금색이다. 이와는 대조적으로, 하루 종일 어둠이 지속되는 겨울 동안에, 순록 눈의 진한 파란색 모습은 눈에서 반사되는 빛이 더 적어지기(빛의 파장이 더 짧아지기) 때문이다.


휘막의 반사율 변화는 콜라겐 섬유 사이의 간격이 줄어들기 때문이며, 겨울 동안 순록의 눈동자에 가해지는 압력이 증가하기 때문인 것으로 보인다. 이것은 긴 어둠 동안(빛의 감지를 최대로 하기 위해) 동공을 완전히 확장된 상태로 유지하기 위해서, 안구 내의 액체(방수) 배출이 부분적으로 막히기 때문인 것으로 보인다. 덧붙여서, 파란색으로의 이동은 빛을 반사하기보다, 광수용체를 통해 측면으로 빛을 더 많이 산란시켜, 빛을 더 많은 포획하게 하고, 망막의 민감도를 증가시켜, 어둠 속에서 잘 볼 수 있게 해준다.

이제 이러한 고도로 복잡한 눈의 기원을 진화론적 메커니즘으로 설명해야하는 진화론자들의 부담은 훨씬 더 커졌다.

.순록의 눈은 여름에는 황금색(오른쪽)에서, 겨울에는 파란색(왼쪽)으로 바뀐다. (University College London)


이러한 종류의 발견은 최초의 것으로서, 순록의 이러한 놀라운 능력은 낮과 밤의 길이가 달라지는, 독특한 환경에서 살아가는 데에 분명히 장점이 되고 있다. 이러한 순록 눈의 고도로 복잡한 구조는 무작위적인 진화 과정과는 거리가 멀어 보이며, 설계를 가리키고 있는 것처럼 보인다. 그리고 그것이 어떻게 진화될 수 있었는지 진화론자들은 알지 못한다.


여기에서의 적응(adaptation)은 자연선택이 개체집단 내에서 더 적합한 변이체를 선택하는 것과 같은 종류의 것이 아님을 주목해야 한다. 진화론에서 말하는 자연선택이 일어날 때[4], 어떤 변화나 특성은 여러 세대가 지난 후에는 되돌아올 수 없다. 그러나 이 경우는 한 개체의 생애 내에서 매년 반복되는 변화이다.


연구자들은 이것을 ”중요한 적응”이라고 부르고 있으면서도, 그러한 정교하고 복잡한 계절적 조정을 가능하게 하는 메커니즘이, 다윈의 진화 과정에 의해 어떻게 발생할 수 있었는지 설명하지 않고 있었다.


그러한 고도로 정교한 층(layers)은 눈의 기원에 대한 진화론적 딜레마를 더욱 어렵게 만들고 있으며[5], 진화가 아니라, 창조와 설계에 대한 강력한 증거가 되고 있는 것이다.

 


Further Reading
Did eyes evolve by Darwinian mechanisms?
Darwin vs. the eye


References and notes
1.Choi, C., Reindeer eyes turn blue in the winter, livescience.com, 30 October 2013.
2.Stokkan, K-A, and 7 others,Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer, Proceedings of the Royal Society B 280(1773): 22 December 2013 | doi:10.1098/rspb.2013.2451.
3.Like various other nocturnal creatures, cats’ eyes can seem to ‘glow in the dark’ when e.g. headlights illuminate their TL.
4.See creation.com/muddy.
5.Bergman, J., Did eyes evolve by Darwinian mechanisms?, J. of Creation 22(2):67–74, 2008; creation.com/eyes-evolve.


번역 - 미디어위원회

링크 - http://creation.com/reindeer-eyes-turn-blue-in-winter 

출처 - Creation 39(3):56, July 2017.

미디어위원회
2017-05-22

박쥐의 비행을 모방한 최첨단 비행 로봇의 개발 

(Bats Inspire High-Tech New Flying Robots)

Avery Foley 


      사람들은 박쥐(bat)를 좋아하지 않지만, 모기들을 일부 제거하고 있다. 이 날아다니는 포유류는 종종 소름끼치는, 무서운, 또는 지조가 없는, 나쁜 이미지를 갖고 있다. 그러나 이 놀라운 야행성 생물은 공학적 경이이며, 새로운 기술을 개발하는 데에 영감을 불어넣고 있다.


박쥐 로봇

연구자들은 박쥐의 놀라운 비행 능력을 모방한, 경량의 배트봇(Bat Bot, B2)을 설계해 왔다.[1] 얇은 실리콘 날개는 탄소 섬유 프레임 위로 뻗어 있으며, 장착된 소형 컴퓨터, 5개의 모터, 센서들은 로봇이 자율적으로 비행할 수 있도록 해준다. 하나님의 창조물인 박쥐를 모방한 이 독특한 디자인은, 배트봇이 박쥐와 유사한 방식으로 비행하고, 비틀고, 다이빙하고, 기동할 수 있게 해준다.

배트봇은 94g의 45cm 길이의 날개를 갖고 있다. 로봇은 날개 막을 동시에 펴고, 각 날개를 접고, 각 다리를 독립적으로 움직일 수 있다. 궁극적으로 연구자들은 B2가 박쥐처럼 거꾸로 매달릴 수 있기를 희망하고 있었다. 현재 30m 미만의 거리만을 비행할 수 있다.[3] 그러나 실제와 달리, B2는 아직 자체적으로 착륙할 수 없다. 민감한 전자장치를 보호하기 위해서, 아직까지는 그물에 떨어진다.

연구자들은 배트봇 기술이 회전날개를 갖고 있는 로터형 드론(rotor-powered drones)의 문제점을 해결하는데 도움이 되기를 희망하고 있었다. 배트봇은 더 민첩하고, 조용하며, 배터리를 덜 사용하고, 부드러운 날개를 가지고 있어서, 충돌 시에 부상 위험을 줄여준다. 즉, 건설 현장이나 재해 지역의 조사 시에, 사람과 가까이에서 사용될 수 있다. 


.CNET에서 배트봇에 대한 영상을(여기를 클릭) 확인해보라. 


박쥐 비행의 복잡성은 경이롭다.

B2 설계에 관여한 엔지니어인 캘리포니아공대 정순조(Soon-Jo Chung) 교수의 말에 의하면, 박쥐는 매우 복잡한 비행생물이며, 그 디자인을 복사하는 것은 ”비행 로봇의 성배(the holy grail of aerial robotics)”라는 것이다. Science Robotics 지에 게재된 B2에 관한 논문은, ”박쥐는 동물들 사이에서 가장 복잡한 동력 비행 메커니즘을 가지고 있다”고 주장했다.[5]

박쥐는 쉽게 날아다니는 것처럼 보이지만, 박쥐의 비행에는 날개를 형성하는 유연한 막과 결합된, 40개가 넘는 능동적 및 수동적 관절들이 필요하다. 정 교수는 ”로봇 설계 시에, 이러한 관절 모두(40개)를 통합하는 것은 비실용적이거나, 불가능하다”고 말한다. 따라서 B2는 단지 9개의 관절만을 가지고 있다.

이 연구에 관여하지 않은, 토론토 미시소거(Toronto Mississauga, 캐나다) 대학의 한 생물학자는 박쥐가 ”얼마나 복잡한지를 말하면서, 어리석은 사람에게는 우스꽝스러워 보인다”고 말했다. 즉, 박쥐는 믿을 수 없도록 극도로 복잡하여, 그 디자인은 거의 최상급을 넘어서는 것으로 보인다는 것이다. 그는 계속해서 말했다 :

박쥐는 곤충이 움직일 수 있는 모든 방법으로 움직일 수 있는 어깨를 가지고 있다. 그리고 팔꿈치, 손목, 그리고 날개 막의 리딩에지를 제어하는 다섯 개의 손가락과 엄지 손가락을 가지고 있다.[6]


비행은 3번 진화했는가?

우리는 자연계에서 날아다니는 많은 비행 생물들을 보고 있다. 많은 새(조류)들과, 곤충(절지동물)들 뿐만 아니라, 박쥐(포유류)도, 그리고 멸종된 익룡(파충류)도 비행할 수 있었다. 각각의 경우에서, 비행은 ‘한 요소도 제거 불가능한 복잡성(irreducibly complex, 환원 불가능한 복잡성)’으로 많은 기관과 구조들을 모두 갖추고 있어야만 가능하다. 그리고 ”그 날개들은 서로 완전히 다르다. 이들 비행 생물체들이 어떤 진화적 연관성을 가지고, 순차적으로 진화했다는 어떠한 증거도 없다.”[7]

항공역학 박사인 창조과학자 앤디 맥킨토시(Andy McIntosh) 교수는 ”자연계에서 비행의 복잡성”이라는 그의 글에서, 비행에 필요한 조건들에 대해서 이렇게 썼다 :

공기보다 무거운 비행체를 제어하기 위해서는, 4가지의 기본적 요구 사항이 있다. 1)윗면에 낮은 공기 압력을 제공하는 정확한 날개 모양, 2)무게를 지탱할 만큼 충분한 날개 면적, 3)어떤 추진 수단, 또는 활공 수단, 4)방향 및 속도를 변경하기 위한, 여분의 표면 또는 주요 표면의 변경 수단.

진화론자들은 파충류, 조류, 포유류, 곤충에서 이러한 매우 복잡한 비행이 어떻게 우연히 진화할 수 있었는지를 설명해야만 한다. 현재의 진화 이야기는 파충류에서 조류로, 어떤 종류의 설치류에서 박쥐로 진화했다는 것이다. 그러나 비행하는 곤충들은 무엇으로부터 진화했는지 아직까지 아무도 모른다. (비행 곤충은 진화론적 연대로 수억 년 된 암석지층에서도 발견되므로, 이들은 매우 일찍 진화했음에 틀림없다). 그러나 이들 곤충들 중에 어떤 한 그룹에서도, 비행이 진화되었음을 가리키는 화석 증거는 없다.


영광을 돌릴 분에게 영광을 돌리라.

다른 생물들도 그렇지만, 비행 생물은 창조주의 탁월하신 창의력과 공학적 설계를 보여준다. 비행은 진화하지 않았다. 하나님께서는 창조주간 다섯째 날에 완전한 형태의, 비행하는 생물들을 창조하셨다. (창세기 1:20-22)

과학자들은 극도로 복잡한 박쥐의 비행을 통해, 하나님의 창조를 보고 있는 것이다. 그들은 이 기술을 모방하려 하고 있다. 하나님의 설계를 빌리는 것은, 우리의 기술을 발전시키고 발명해내는 훌륭한 방법이 되고 있다. 그러나 우리는 합리적으로 생각해야 한다. 박쥐의 비행과 같은 극도로 복잡한 경이로운 기술이 무작위적인 자연적 과정으로 우연히 생겨날 수 있는 것인가? 많은 새(조류)들과, 곤충(절지동물)들, 멸종된 익룡(파충류)의 비행도 각각 독립적으로 여러 번 진화되었는가? 아니다. 그와 같은 생각은 극도로 불합리한 생각이다. 그러한 박쥐의 비행에서 밝혀지고 있는 경이로운 복잡성은 초월적 지혜의 창조주가 계심을 가리키는 것이다.

”창세로부터 그의 보이지 아니하는 것들 곧 그의 영원하신 능력과 신성이 그가 만드신 만물에 분명히 보여 알려졌나니 그러므로 그들이 핑계하지 못할지니라” (로마서 1:20)



Footnotes
1.Meghan Rosen, 'Bat Robot Takes Wing,” Science News, February 1, 2017,
 https://www.sciencenews.org/article/bat-robot-takes-wing.
2.The Verge’s Facebook page, accessed April 10, 2017,
https://www.facebook.com/verge/videos/1294561677246839/.
3.Andrew Wagner, 'A ‘Bat Bot’ Takes Flight,” PBS, February 2, 2017,
 http://www.pbs.org/newshour/rundown/bat-bot-takes-flight/.
4.Rosen, 'Bat Robot Takes Wing.”
5.Rebecca Hersher, 'Bat Bot Flying Robot Mimics ‘Ridiculously Stupid’ Complexity of Bat Flight,” NPR, February 3, 2017,
http://www.npr.org/sections/thetwo-way/2017/02/03/513232878/bat-bot-flying-robot-mimics-ridiculously-stupid-complexity-of-bat-flight.
6.Wagner, 'A ‘Bat Bot’ Takes Flight.”
7.Andy McIntosh, 'The Intricacies of Flight in the Natural World,” Answers in Genesis, March 3, 2016,
https://answersingenesis.org/animal-behavior/intricacies-of-flight-natural-world/.


*관련기사 : 박쥐처럼 나는 소형 로봇 '배트봇' 개발 (2017. 2. 2. 연합뉴스)
http://www.yonhapnews.co.kr/bulletin/2017/02/01/0200000000AKR20170201034500017.HTML

박쥐의 비행원리, 차세대 비행기 제작에 도움 (2015. 5. 1. SBS News)

https://news.sbs.co.kr/news/endPage.do?news_id=N1002956432

[현장영상] 박쥐처럼 나는 로봇…생채 모방 '바이오닉 플라잉 폭스' 공개 (2018. 4. 19. 연합뉴스)

https://www.youtube.com/watch?v=vF56KzlJvtE

생체 공학적으로 설계된 인공 큰박쥐 (2018. 7. Motion Control)

https://motioncontrol.co.kr/default/news_tobe/?nwsid=n3&uid=11245

박쥐처럼 ‘소리로 보는’ 기술 개발. 빠른 속도로 3D 영상 재현…상용화 눈앞 (2019. 6. 26. ScienceTimes)

https://www.sciencetimes.co.kr/news/%EB%B0%95%EC%A5%90%EC%B2%98%EB%9F%BC-%EC%86%8C%EB%A6%AC%EB%A1%9C-%EB%B3%B4%EB%8A%94-%EA%B8%B0%EC%88%A0-%EA%B0%9C%EB%B0%9C/

박쥐처럼 반향정위 사용해 환경 탐색하는 ‘로뱃(Robat)’ (2019. 4. 8. AiTimes)

https://www.aitimes.com/news/articleView.html?idxno=48105


번역 - 미디어위원회

링크 - https://answersingenesis.org/technology/biomimicry/bats-inspire-high-tech-new-flying-robots/ ,

출처 - Answers, 2017. 4. 18.

미디어위원회
2016-03-01

문어의 유전체는 사람의 것만큼 거대했다. 

(Octopus Genome as Large as Human Genome)

Frank Sherwin 


       경이로운 문어(octopus)는 과학자들을 계속 놀라게 만들고 있었다. 이 무척추동물은 모든 면에서 연구자들을 깜짝 놀라게 만들고 있었는데, 몸 색깔을 극도로 빠르게 변화시켜 주변 배경 속으로 사라지는(위장하는) 능력, 놀라운 지능과 같은 것들이다.

”문어는 고도의 지능을 가진 생물”이라고 영국 남서부 웨이머스 해양생물센터의 해양생물학자인 클레어 리틀(Claire Little)은 말한다. ”문어는 아마도 우리가 알고 있는 가장 지능이 뛰어난 무척추동물입니다. 그들은 애완용 개(dog) 정도의 지능인 것으로 분류되고 있습니다.”[1]

이들 8개의 다리를 가진 생물은 어디에서 왔을까? 진화론자들은 알지 못한다. 문어는 아마도 벨렘나이트(belemnite, 멸종된 두족류)에서 왔을 것이라고 알라비(Allaby)는 말한다.[1] 그러나 드물지만 문어 화석이 발견되었을 때, 그들은 창조과학자들이 예측하는 것처럼 100% 문어였다. 문어는 항상 문어였다.


최근에 생물학자들은 문어의 유전체를 최초로 분석했다. 그들은 문어의 DNA 염기서열을 구성하고 있는 뉴클레오타이드의 정확한 순서를 밝혀낸 것이다. 생물학자들은 문어가 사람의 유전체 크기와 비슷한 거대한 크기의 유전체(genome, 유전자들의 완전한 세트)를 갖고 있음을 발견했다. 생물학자들은 문어의 유전체가 그러한 거대한 크기인 것은, 단순히 중복됐거나, 자체적으로 복사된 것이라고 생각했다. 하지만 심도 깊은 조사에 의해서, 중복된 것이 아님이 밝혀졌다. 대신에 연구자들은 문어의 뇌 발달에 관여하는 커다란 유전자들 집단을 발견했다. 이때까지, 그러한 정교한 뇌 회로는 척추동물에서만 독점적으로 갖고 있는 것으로 생각해왔다.


이들 대략 150개의 뇌 발달 회로는 회충(roundworm, C. elegans)이나 초파리(fruit fly) 같은 잘 연구된 실험실 무척추동물에서는 발견되지 않았었다. 그들은 창조된 문어에서만 독특한 것이다. 다른 연구들은 흡반 조직(sucker tissue)에서 빨판 기능과 관련된 일을 하는 것으로 보이는 활동적인 유전자들을 찾아냈다고, 시카고대학의 캐리 알버틴(Carrie Albertin)은 말한다.[3]


결론적으로, 문어의 유전체는 무척추동물도 예상치 못했던 고도의 복잡성과 타고난 뇌 기능을 가지고 있음을 보여주었다. 문어는 주변 모습과 일치되도록 순식간에 몸 색깔을 변화시켜 위장하고, 문제를 해결하고, 심지어 빨판으로는 맛을 볼 수도 있다. 문어가 보여주는 경이로운 능력과 복잡성은 이들을 창조하신 초월적 지성의 하나님을 가리키고 있는 것이다.



References

1.Getting A Handle On Octopuses' Dominant Arms. NPR Research News. Posted on npr.org July 10, 2008, accessed February 10, 2016.
2.Allaby, M. 2014. Oxford Dictionary of Zoology, 4th edition. Oxford University Press, 429.
3.Greenfieldboyce, N. Octopus Genome Offers Insights Into One Of Ocean's Cleverest Oddballs. NPR Science. Posted on npr.org August 12, 2015, accessed February 19, 2016.

 

*관련기사 : 문어 유전자 비밀 풀렸다…'생김새와 달리 지능 뛰어나'
http://www.yonhapnews.co.kr/bulletin/2015/08/15/0200000000AKR20150815027300075.HTML
(2015. 8. 15. 연합뉴스)

 

번역 - 미디어위원회

링크 - http://www.icr.org/article/9200 

출처 - ICR News, 2016. 2. 22.

미디어위원회
2016-02-11

전기뱀장어의 놀라운 능력은 진화를 거부한다. 

(Stunning and stealthy : The amazing electric eel)

Dominic Statham 


놀라운 전기뱀장어

전기뱀장어(electric eel, Electrophorus electricus))는 늪의 음침한 곳이나 남미의 강에 숨어 지낸다. 매우 정교한 전기정위(electrolocation, 전기장의 변화를 통하여 주변의 물체나 먹이를 감지하는 능력) 시스템을 갖춘 전기뱀장어는 눈에 잘 안 띄는 상태에서 이동하고 사냥하는 능력을 가진 은밀한 포식자이다. 자신의 몸에서 생성된 전기장의 뒤틀림을 검출하는 전기수용기(electroreceptors)들을 이용하여, 그것은 숨어있는 사냥감을 찾아낼 수 있다. 그리고는 그것은 말(horse)과 같은 대형 포유류까지 기절시키거나, 심지어는 사람을 죽일 만큼 강력한 전기충격으로 먹이를 고정(마비)시킨다.[1] 그것은 긴 원통형의 몸을 가졌다는 점에서, 우리가 흔히 생각하는 뱀장어(order Anguilliformes)와 비슷하지만, 그것은 뱀장어와는 다른 목(目, order)인 김노투스 목(Gymnotiformes, 전기뱀장어 목)에 속한다. 사실, 진화론자들은 물고기의 전기기관이 독립적으로 8번 진화했다고 주장해야만 한다. 그리고 이렇게 강한 전기장을 발생시킬 수 있는 물고기를 생체발전(electrogenic)이라고 부른다.

©depositphotos.com/Yourth2007

전기뱀장어는 어떻게 그렇게 높은 전압을 발생시킬까?

전기물고기는 전기를 발생시키는 유일한 생물이 아니다. 사실 모든 살아있는 생물들은 어느 정도 전기를 발생시킨다. 예를 들면 우리 몸의 근육들은 뇌의 전기신호에 의해 통제된다. 박테리아에 의해 생성되는 전자들은 연료 세포 내에서 전기를 발생시키는 데 사용될 수 있다.[2] 전기뱀장어도 같은 방법으로 전기를 생산하는데, 음식으로부터 얻은 에너지를 사용하여 전기 생산세포(electrocytes)라고 불리는 세포들을 충전한다(아래에 제시된 박스 글을 참고하라.). 또한, 각각의 세포들은 소량의 전류만 운반하는데, 마치 토치 내의 배터리처럼, 이러한 세포들 수천 개가 모여 650V에 달하는 전압을 발전시킬 수 있는 것이다. 평행하게 정렬된 많은 세포들은 1암페어 정도의 전류와 650와트(W; 1W = 1V × 1A) 정도의 충격을 발생시키고 있다. 

 

전기뱀장어들 자신은 어떻게 감전되지 않는 것일까?

이 질문에 대해서 과학자들도 완전히 확답을 하고 있지는 못하지만, 이 문제에 도움이 될 만한 몇 가지 관찰이 있다. 우선, 전기뱀장어의 중요한 기관들(뇌, 심장 등과 같은)은 전기생성 기관과 멀리 떨어진, 머리 근처에 위치해 있으며, 전기가 통하지 않는 지방조직으로 둘러싸여 있다. 또한 피부가 손상된 전기뱀장어들이 자신이 발생시킨 전기충격에 의해 쉽게 상처를 입는 것으로 미루어볼 때, 전기뱀장어의 피부는 절연체인 것으로 보인다. 둘째로, 전기뱀장어들은 짝짓기를 할 때 가장 강력한 충격을 발생시킨다. 하지만 짝에게 피해를 입히지는 않는다. 그러나 짝짓기를 할 때가 아니라면, 다른 전기뱀장어를 죽일 수도 있는 전기를 발생시킨다.[4] 이것은 그들이 켜고 끌 수 있는, (전기에 대한) 방어체계가 있음을 유추해볼 수 있다.

 

전기뱀장어는 진화를 통해 탄생할 수 있었을까?

이러한 전기기관이 다윈의 진화 과정처럼, 많은 작은 단계들이 하나씩 우연히 생겨나 만들어졌을 것으로 상상하기 어렵다. 발전되는 전기충격이 처음부터 강력하지 않다면, 그것은 먹이를 기절시키는 용도라기보다는 위험을 경고하는 용도였을 것이다. 더욱이, 기절시키는 능력이 진화되기 위해서는, 전기뱀장어는 동시에 스스로를 전기충격으로부터 보호하는 능력 또한 진화됐어야만 한다. 전기충격의 전압을 높여주는 돌연변이가 발생할 때마다, 전기뱀장어의 전기 절연성을 높여주는 돌연변이도 함께 일어났어야만 한다. 게다가 한 번의 돌연변이는 이와 같은 진화에 충분치 않아 보인다. 예를 들어, 주요 장기들이 머리 가까이로 이동하려면 많은 돌연변이들이 동시에 일어나야했기 때문이다. 또한 먹이를 감전시킬 수 있는 물고기는 매우 드물지만, 항해를 하거나, 의사소통의 용도로 낮은 전압의 전기를 사용하는 물고기들은 많이 있다.


전기뱀장어는 ‘칼고기(knifefish)’로 알려진 남미 물고기 한 그룹의 일원이다. 그들 모두는 전기정위 능력을 가지고 있다.[5] 아프리카의 은상어(elephantfish, 코끼리물고기, family Mormyridae) 역시 전기정위 능력이 있으며, 그들의 남미에 사는 친척(김노투스 목)과 함께 이 능력을 진화시켜 왔다고 말해진다. 사실, 진화론자들은 어류의 전기기관들이 8번에 걸쳐 독립적으로 진화했다고 주장해야만 한다.[6] 전기발생 기관의 경이로운 복잡성을 감안해볼 때, 8번은 고사하고, 한 번 우연히 진화했다고 것도 믿기 힘든 일이다. 남미의 칼고기와 아프리카의 은상어 모두 그들의 전기기관을 위치 파악과 의사소통을 하는 데에 사용하고 있으며, 다양한 타입의 서로 다른 종류의 전기수용기(electroreceptors)들을 사용하고 있다. 또한 두 그룹 모두 다양하고 복잡한 파형(waveforms)의 전기장을 만드는 종들을 포함하고 있다.[7]

전기를 생성하는 작은 세포에서부터, 전기뱀장어가 자가 발전한 전기장의 뒤틀림을 분석하는 정교한 소프트웨어까지의 모든 것들은 경이로운 창조주의 창조물인 것이다.

칼고기의 두 종인 Brachyhypopomus bennettiBrachyhypopomus walteri는 너무 유사해서 같은 종이라고 생각될 정도이지만, 전자는 DC(직류) 전류를 생성하고, 후자는 AC(교류) 전류를 생성한다.[8, 9] 하지만 이들의 진화 이야기는 깊게 파고들수록 더욱 믿을 수 없게 된다. 그 물고기들은 서로의 전기장 발생으로 인한 간섭과 교란(jamming)을 피하기 위해서, 몇몇 종들은 전기 방출의 주파수를 변경하는 시스템을 가지고 있다는 것이다. 중요한 것은 그것이 작동하는 방식은 사실상 남미(Eigenmannia)의 knifefish나 아프리카(Gymnarchus)의 frankfish나 똑같다는 것이다.[10] 동일한 교란회피시스템(jamming avoidance system)이 대륙으로 분리된 두 그룹에서 독립적으로 동시에 두 번 진화될 수 있었을까?

 

최고의 설계

전기뱀장어의 발전소(power plant)는 크기대비 효율, 유연성, 휴대성, 친환경성, 자체수리성 등의 측면에서 사람이 만든 모든 발전기들을 능가한다. 발전소의 모든 부분들은 전기뱀장어가 빠른 속도로 민첩하게 수영할 수 있도록 해주는 매끄러운 몸에 통합되어 있다. 전기를 생성하는 작은 세포에서부터 전기뱀장어가 스스로 생성한 전기장의 뒤틀림을 분석하는 정교한 소프트웨어까지의 모든 것들은 경이로운 창조주를 가리키는 것이다.


전기뱀장어는 어떻게 전기를 일으킬까?

전기물고기(electric fish)들은 우리 몸의 신경이나 근육과 비슷한 방식으로 전기를 생성한다. 전기생산세포(electrocyte cells) 안에서는 Na-K ATPase 라고 불리는 특별한 효소 단백질이 펌프작용으로 Na 이온을 세포막을 통해 방출하고, K 이온을 흡수한다. (ATP=아데노신3인산, 펌프작용의 에너지를 제공하는 분자[11]). K 이온의 내부&외부 간 불균형은 K 이온을 세포로부터 내보내는 화학변화에 박차를 가한다. 비슷한 방법으로 Na 이온의 내부&외부간 불균형은 Na을 세포 내부로 흡수하는 화학변화에 박차를 가한다. 세포막(membrane-선택적 투과막)에 내장돼있는 다른 단백질들은 K 이온이 세포 바깥으로 배출될 수 있도록 해주는 K 이온 통로나 기공으로써의 역할을 한다. K 양이온이 세포 바깥으로 축적됨에 따라, 전하량의 기울기(electrical gradient)는 세포막 바깥쪽이 안쪽보다 더욱 +로 기울도록 세포막을 가로질러 형성된다. Na-K ATPase pumps는 오직 양 이온만을 선택하도록 설계되어 있다. 그렇지 않았다면, 음 이온이 흘러서 전하는 중성이 되었을 것이다.

화학적 기울기는 K 이온을 방출시키며, 전하량 기울기는 K 이온을 세포 내부로 돌려보낸다. 화학적 힘과 전기적 힘이 서로를 상쇄시키는 평형점에서, 세포 바깥쪽의 전위는 세포 내부보다 +0.07V만큼 양전하를 띤다. 따라서, 상대적으로 세포 내부의 전위는 세포 외부에 비해 –0.07V만큼 음전하를 띤다.

하지만 더 많은 단백질들이 세포막에 내장되어, Na 이온이 다시 세포 내부로 들어올 수 있도록 해주는 Na 이온 통로를 제공한다. 이것들은 평상시에는 닫혀있지만, 전기기관들이 활성화 되면, 그것들이 열려, Na 양이온이 확산을 통해 다시금 세포 내부로 유입된다. 이러한 경우에 평형상태는 세포 내부가 +0.06V로 충전됐을 때 이루어진다. 총 전압 변화량은 -0.07V에서 +0.06V가 된 것이므로 0.13V라고 할 수 있다. 이러한 변화는 0.001초 만에 급속히 일어난다. 5000개의 전기생산세포(electrocytes)들이 직렬로 쌓여있기 때문에, 모든 세포들을 동시에 방전시킴으로써, 대략 5000 × 0.13V = 650V의 전기가 생성된다.


.전기뱀장어의 해부도. 전기뱀장어의 몸의 대부분은 전기기관으로 구성돼있다. 주요 기관들과 사냥 기관(Hunter’s organ)들은 전기를 생성하고 저장하는 역할을 한다. 삭스기관(Sachs’ organ)은 전기정위를 위해 사용되는 낮은 전압의 전기장을 생성한다.

.Na-K ATPase pump. 매 주기마다 2개의 K 이온들이 세포 안으로 들어오고, 3개의 Na 이온들이 세포를 빠져나간다. 이러한 과정은 ATP로부터 생성된 에너지에 의해서 이루어진다.



Related Articles
The platypus
Electrical design in the human body


Further Reading
Design Features Questions and Answers


*관련기사 : 전기뱀장어 본떠…인간 몸에서 ‘전기 생산’ 길 열렸다  (2017. 12. 14. 한겨레) 

https://www.hani.co.kr/arti/science/science_general/823495.html

전기 뱀장어와 비슷한 새로운 종류의 발전기 (2018. 9. 3. 지속가능저널)

http://m.sjournal.kr/news/articleView.html?idxno=2200

진정한 초능력을 가진 10대 동물들 (2017. 10. 29. 매거진K)

https://magazine-k.tistory.com/518

전기뱀장어 전기 모아서 발전? (2019. 4. 1. 아시아경제)

https://post.naver.com/viewer/postView.nhn?volumeNo=13396875&memberNo=4770981

860볼트 고전압으로…아마존 전기뱀장어의 협동사냥  (2021. 1. 15. 한겨레) 

https://www.hani.co.kr/arti/animalpeople/ecology_evolution/978933.html


References and notes
1.Piper, R., Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, pp. 40–42, Greenwood Press, USA, 2007.
2.Fuel cell that uses bacteria to generate electricity, Science News, 7 January 2008; sciencedaily.com.
3.Power [watts] = potential difference [volts] × current [amps].
4.Electric Eel, Cleveland Metroparks Resource Library; resourcelibrary.clemetzoo.com/animals/164. Last accessed July 2013.
5.See e.g. our article on the black ghost knifefish, Creation 15(4):10–11, 1993; creation.com/knifefish.
6.Alves-Gomes, J.A., The evolution of electroreception and bioelectrogenesis in teleost fish: a phylogenetic perspective, Journal of Fish Biology 58(6):1489–1511, June 2001.
7.Hopkins, C.D., Convergent designs for electrogenesis and electroreception, Current Opinion in Neurobiology 5:769–777, 1995.
8.Sullivan, J.P. et al., Two new species and a new subgenus of toothed Brachyhypopomus electric knifefishes (Gymnotiformes, Hypopomidae) from the central Amazon and considerations pertaining to the evolution of a monophasic electric organ discharge, Zookeys 327:1-34, 2013.
9.Science News, AC or DC? Two newly described electric fish from the Amazon are wired differently, 28 August 2013; sciencedaily.com.
10.Hopkins, ref. 7, p. 775.
11.Thomas, B., ATP synthase: majestic molecular machine made by a mastermind, Creation 31(4):21–23, October 2009; creation.com/atp-synthase.
12.See Wieland, C., World Winding Down: A layman’s guide to the Second Law of Thermodynamics, Creation Book Publishers, Powder Springs, GA, 2013.


번역 - 정윤상

링크 - http://creation.com/electric-eel 

출처 - Creation 36(1):28–31, January 2013.

미디어위원회
2016-01-14

바다의 카멜레온인 갑오징어는 스텔스 기술도 갖고 있었다. 

(Smart and Stealthy Cuttlefish)

Frank Sherwin 


     (바다의 카멜레온이라 불려지는) 갑오징어(Cuttlefish, Sepia officinalis)는 두족류(cephalopods)라 불리는, 갑오징어목(Sepioidea)에 속하는 생물이다. 두족류처럼 이 갑오징어는 화석기록에서 갑자기 출현한다. 두족류의 진화론적 조상은 알려져 있지 않다. 갑오징어는 그들의 주요 이동방법인 수압추진(hydropropulsion)을 사용하여 꽤 활발히, 그리고 극도로 민첩하게 움직인다.

많은 동물학자들은 갑오징어를 가장 영리한 무척추동물 종의 하나로 간주하고 있다. 이것은 진화론적 개념으로는 상당한 문제가 된다. 진화론자들은 지성(intelligence)은 사회적 상호작용(social interactions)과 긴 수명을 통해서 진화되었다고 생각하고 있다. 그러나 갑오징어는 두족류이다. 그들은 복잡한 사회생활을 하지 않고, 단지 일 년 정도의 수명((나비의 수명 정도)을 가지고 있다. 그렇다면 갑오징어는 어떻게 그렇게 현명하게 되었을까?

덧붙여서, 갑오징어는 일종의 시각적 슈퍼파워를 가지고 있다. 그들은 사람이 볼 수 없는 약한 파장의 정보를 알 수 있다. 간혹 전기장(electric fields)으로 구성된 빛은 우선적으로 어떤 방향으로 정렬하게 된다. 그 현상은 ‘편광(polarization)’이라 불려진다. 갑오징어는 편광된 빛의 방향이 변화되었을 때, 그것을 감지할 수 있다. 다른 동물들도 편광 시각을 가지고 있다. 그러나 갑오징어의 시각은 가장 최고인 것으로 나타난다. 그것은 고품질이다.[1]


불행하게도 갑오징어는 상어(sharks)와 같은 바다 포식자들에게는 양질의 맛있는 먹이감이다. 이것이 이들 바다의 카멜레온들이 위장술을 갖도록 설계된 이유이다. 그리고 최근 갑오징어에서 전기적 ‘스텔스 기술(stealth technology, 적의 레이더에 탐지되지 않도록 하는 기술)’이 발견되었다.[2] 그들은 몸에 네 부분으로부터 매우 약한 전기장을 방출한다. (이 작은 인공적 전기장은 AAA 배터리보다 약 7만5천 배 약하다). 상어는 주둥이에 정렬되어 있는 민감한 탐지기들을 사용하여, 이러한 초미세한 전기장 방출을 감지할 수 있다.


갑오징어는 이것에 대해 어떤 조치를 취할까? 갑오징어가 상어를 감지하면 즉각적으로 움직임을 멈추고, 외투막(등 위에 있는 연부조직의 커다란 주름)을 엄하게 단속하면서, 팔들과 함께 몸체 구멍들을 덮어버린다. 이것은 갑오징어의 전기 방출을 감소시킨다. 갑오징어의 누설된 전기신호의 차단은 포식자로부터 발견될 가능성을 낮추어 잡아먹힘을 모면하게 된다.


그러므로 매혹적인 갑오징어는 잡아먹힘을 피하기 위한 두 가지 방법을 가지고 있다. 하나는 1초 보다 빠르게 작동되는 시각적 위장술이고, 또 하나는 최근에 발견된 전기적 스텔스 기술이다. 갑오징어의 경이로운 위장술과 스텔스 기술 등은 방향도 없고, 목적도 없고, 지성도 없는, 무작위적인 과정인 돌연변이에 의해서 우연히 생겨날 수 없어 보인다. 그것은 설계자에 의해서 지적으로 설계되었음을 가리키고 있다.



References

1.Temple, S. High definition polarization vision discovered in cuttlefish. Bristol Vision Institute News. Posted on bristol.ac.uk on February 24, 2012, accessed December 20, 2015.
2.Duke University. Camouflaged cuttlefish employ electrical stealth: Electrical masking used in addition to visual camouflage. ScienceDaily. Posted on sciencedaily.com on December 2, 2015, accessed December 20, 2015.

*Mr. Sherwin is Research Associate, Senior Lecturer, and Science Writer at the Institute for Creation Research.

 

*추천 : Masters of Disguise
https://answersingenesis.org/aquatic-animals/masters-disguise/


*관련기사 : 바다의 카멜레온 ‘갑오징어’ (2014. 7. 1. 사이언스타임즈)

엑스맨의 과학기술, 현실화될까 (2017. 10. 16. 사이언스타임즈) 

갑오징어 모방 카메라, 원하는 곳만 선명하게 본다 (2023. 2. 16. 조선비즈)

https://biz.chosun.com/science-chosun/science/2023/02/16/ZWAYPBECGVAVNHIXCVQBCJBE2U/


번역 - 미디어위원회

링크 - http://www.icr.org/article/9100 

출처 - ICR News, 2016. 1. 11.

미디어위원회
2016-01-11

도마뱀에서 발견되는 경이로운 특성들은 지적설계를 가리킨다. 

(Lizards that Leap Over Evolution)

David F. Coppedge


     진화론자들에게는 덜 진화된 생물일 수 있는 어떤 도마뱀들은 세계 챔피언들이다.

세계에서 가장 빠른 혀 : National Geographic(2016. 1. 5) 지에 의하면, 카멜레온(chameleon)은 세계에서 가장 빠른 혀를 가진 생물이라는 것이다. 카멜레온의 경이로운 성능의 혀는 초당 3,000프레임을 촬영하는 고속카메라를 사용하여, 카멜레온이 곤충을 낚아채는 것을 관측하던 연구자들을 놀라게 했다. 이 느릿하게 움직이는 것처럼 보이는 도마뱀은 파충류, 조류, 포유류를 포함하는 그룹인 양막류(amniotes)에서 가장 빠른 가속력과 파워를 가지고 있었다.

작은 카멜레온은 커다란 카멜레온과 동일하게 수행할 뿐만 아니라, 많은 경우에서 그들의 혀는 더 빠르고 강력함을 보여주었다.

예를 들어, 실험에서 가장 작은 혀를 가진, 멸종 위기에 처한 탄자니아의 카멜레온인 Rhampholeon spinosus의 혀는 중력가속도의 264배나 되는 최고 가속도를 낼 수 있었다. 만약 그것이 자동차(car)라면, 카멜레온의 혀는 정지 상태에서 1/100초 만에 시속 97km로 가속화될 수 있다.

Science Magazine(클릭하면 영상을 볼 수 있음) 지는 자신의 몸체 길이의 두 배까지 혀를 확장시키는 카멜레온의 영상을 보여주고 있다. 과학자들은 혀의 발사추진력이 14,000watts/kg인 것으로 계산했는데, 이것은 치타와 가지뿔영양(pronghorns)을 포함하여, 모든 육상 척추동물에서 가장 높은 출력 파워였다. 그러면 진화론적으로 이 혀는 어떻게 진화되었을까? 작은 카멜레온은 큰 개체보다 자기 몸 크기에 비해 더 큰 혀를 갖고 있다. 그렇다면, 작은 카멜레온은 더 진화한 것인가? 왜냐하면 큰 몸을 가진 개체는 생존하기 위해서 더 많은 먹이를 소비해야하는 핸디캡을 갖고 있기 때문이다. Live Science 지는 한 진화론자의 의견을 인용하고 있었다 : ”그것은 신진대사적 제약에 의해서 구동된 형태학적 진화의 사례이다.” 그렇다면, 왜 뿔도마뱀과 뱀은 이러한 능력을 갖지 못했는가? 진화론자들은 어떠한 증거도 없이, 단지 ”그랬을 것이다”라는 추정 이야기만을 늘어놓고 있는 것이다.


학습하는 도마뱀 : 호주에 고아나(goannas)라 불리는 왕도마뱀(Monitor lizards)을 그들의 개체수를 위협하는 외래 생물종인, 독이 있는 수수두꺼비(cane toads)를 먹지 않도록 훈련되어 있었다. BBC News(2016. 1. 6)는 보도했다. ”연구에 의하면, 왕도마뱀은 경험으로부터 학습하는 능력을 가지고 있으며, 그 지식을 오랜 기간 동안 보유할 수 있음을 가리키고 있다.” 왕도마뱀은 진화론자들이 생각하고 있는 것처럼, 바다로부터 새롭게 진화하여 육상으로 올라온, 원시적인 사지동물이 아니었다.  


도마뱀붙이를 모방한 타이어 : 도마뱀붙이(gecko)는 생체모방공학(biomimetics)의 아이콘으로 알려져 있다. Science Daily(2016. 1. 4) 지에서 보도된 한 기사는, 도마뱀붙이의 발가락(toes)이 갖고 있는 놀라운 접착력에 대한 창조적인 모방을 보도하고 있었다. ”도로에 더 큰 접착력을 갖도록 설계된 새로운 형태의 자동차 타이어를 상상해보라.” 그 기사는 유럽 물리학회지(European Physical Journal)에 게재된 논문에 근거한 것이다. 차력사들은 뾰족한 못들이 박혀있는 널빤지 위에 편안하게 누워있곤 한다. 연구자들은 이것을 응용하여, 직경과 높이에 있어서 모두 정밀한, 기둥 패턴을 가지는, 매끄러운 실리콘 구(smooth silicon sphere)와 부드러운 질감의 실리콘 표면 사이의 접촉 연구를 위한 모델을 개발했다. 이것은 도마뱀붙이의 발 위에 있는 털의 효과와 유사한 것으로서, 반데르발스 힘(van der Waals forces)을 사용하여, 표면에 가볍게 앉거나 누를 때에 부착력을 만들어낼 수 있다. ”자연은 작은 크기의 다중 털로 뒤덮여진, 도마뱀붙이의 발과 같은, 경이로운 조절 가능한 부착력을 보여주는 사례들로 가득하다.”  



이 이야기들 모두에서 초점이 맞춰지고 있는 것은 지적설계(Intelligent design)이다. 동물들을 자세히 연구한다면, 응용할 수 있는 놀라운 것들은 발견하게 된다. 사람들이 모방하려고 하는 그러한 경이로운 기능들이 방향도 없고, 지성도 없고, 목적도 없는, 무작위적인 돌연변이로, 어쩌다 우연히 생겨날 수는 없어 보인다. 더욱이 다음 세대로 전해줄 수 있는 유전정보가 DNA 내에 우연히 생겨날 수는 없어 보인다.


*관련기사 : 도마뱀에서 배운 수술봉합테이프 (2016. 10. 26. ScienceTimes)

https://www.sciencetimes.co.kr/news/%EB%8F%84%EB%A7%88%EB%B1%80%EC%97%90%EC%84%9C-%EB%B0%B0%EC%9A%B4-%EC%88%98%EC%88%A0%EB%B4%89%ED%95%A9%ED%85%8C%EC%9D%B4%ED%94%84/

美 스탠포드대, 도마뱀에서 영감 얻은 '로봇핸드' 개발 (2021. 12. 17. 로봇신문)

https://www.irobotnews.com/news/articleView.html?idxno=27234

사막 도마뱀에서 영감을 얻은 화성 탐사용 4족 로봇 (2023. 2. 6. 로봇신문)

http://m.irobotnews.com/news/articleView.html?idxno=30723

한인 과학자 참여 '도마뱀 꼬리 역설' 풀었다 (2022. 2. 18. 연합뉴스)

https://www.yna.co.kr/view/AKR20220218074600009

도마뱀이 위급 시 꼬리를 빨리 자르는 비결은 (2022. 2. 20. 동아사이언스)

https://m.dongascience.com/news.php?idx=52484

 

번역 - 미디어위원회

링크 - http://crev.info/2016/01/lizards-that-leap-over-evolution/ 

출처 - CEH, 2016. 1. 6.

Brian Thomas
2016-01-07

동물들의 경이로운 설계 (2015년 톱 뉴스)

(Top 2015 News: Amazing Animal Designs)


      매년 과학자들은 동물들의 새롭고 경이로운 설계를 발견하고 있다. 2015년도 예외는 아니었다. 각 발견은 모든 세대들이 들을 필요가 있는 동일한 메시지를 전해주고 있다. ”하늘이 주의 것이요 땅도 주의 것이라 세계와 그 중에 충만한 것을 주께서 건설하셨나이다 남북을 주께서 창조하셨으니...”[1]


”별난 경이로운” 설계의 사례로, 생물학자들은 보르네오(Borneo)에 있는 정글 박쥐가 낮 시간에 기생충이 없는 보금자리를 사용하기 위해서, 낭상엽 식물(pitcher plants)을 발견하는 수단에 대해서 기술하고 있었다. 이 식물은 박쥐의 배설물로부터 영양분을 얻는다. 그래서 그 생물들은 서로 멋지게 협력하고 있는 것이다. 경이로운 초음파 반사판(sonic reflectors)이 각 낭상엽 식물의 개구부 바로 위에 자라고 있다. 이것은 근처의 박쥐들에게 숨을 수 있는 완벽한 장소에 대한 정보를 주고 있다. 식물의 오목한 반사판으로부터 반사된 박쥐의 초음파는 일반적인 정글 식물들 보다 더 큰 소리로 들리게 된다. 또한 반사판은 인식될 수 있는 3차원적 패턴을 형성하도록, 이 특별한 박쥐의 고음역의 소리에 딱 맞도록 작은 가장자리 면을 가지고 있다. 따라서 박쥐의 초음파는 반사판의 측면을 탐지한다. 그러한 방법으로 박쥐는 빠르게 날아가서 앞에 있는 출구를 발견하는 것이다. 이 정확한 암호화된 구조에 대한 설계도가 어떻게 식물의 DNA 안에 들어갈 수 있었을까? 박쥐의 초음파가 낭상엽 식물의 DNA 내에 암호를 쓸 수는 없는 것이다. 

*참조 : 낭상엽 식물은 박쥐를 유인하도록 설계되어 있었다.
http://www.creation.or.kr/library/itemview.asp?no=6236

보르네오의 작은 박쥐처럼 거대한 흰긴수염고래(blue whales, 대왕고래)는 또한 정확한 설계된 특성을 가지고 있었다. 2015년에 생물학자들은 수염고래(baleen whale)가 살아가는 데에 필요한 특성을 보고하고 있었다. 예를 들어, 장엄한 대왕고래는 크릴새우 떼를 삼키기위해 돌진먹기로, 부채처럼 접혀졌다 펴지는 입을 넓게 벌린 후, 혀 신경(tongue nerve)을 후퇴시키기 위해서, 고무끈 같은 조직을 사용하고 있었다. 수염고래는 그 신경이 고래의 뇌로 보내는 중요한 감각정보 없이는 죽을 수 있다. 수염고래에 있어서 그러한 유연한 혀 신경은 너무도 필요한 것으로 반드시 있어야만 하는 것처럼 보인다.[3] 

*참조 : 수염고래에서 늘어나는 신경이 발견되었다.
http://www.creation.or.kr/library/itemview.asp?no=6160

동물과 사람의 귀 안쪽에 있는 전정기관(vestibular organs, VO)은 균형을 유지할 수 있도록 해준다. 2015년의 생물물리학 연구는 신체와 전정기관 사이의 현명한 의사소통을 밝혀냈다. 그들의 배열과 규약은 모두 자동적으로 조절되는데, 그러한 것들은 우리가 달릴 때 운동 멀미(motion sickness)를 일으키지 않도록 예방해준다. 뇌는 근육을 활성화시키는 신경 신호를 내보낸다. 그 신호는 복사되고, 척수는 한 복사물을 전정기관으로 보낸다. 그리고 뒤에 두 번째의 한 조각이 그 근육을 수정하기 위해서 동일한 복사물을 보낸다. 전정기관은 무엇이 오고 있는지를 알고 있다. 그래서 이러한 방법으로 신체는 자기가 의도한 운동과 외부적 원인에 의한 운동을 구별할 수 있다.[4] 무작위적인 자연적 과정으로는 생겨날 수 없는 것처럼 보이는, 이러한 정교하게 설계된 장치는 전정기관으로 하여금 신체운동을 예측하도록 해준다. 자연적 과정은 이러한 것을 만들어낼 수 없다.


화석(fossils)을 연구하는 과학자들도 2015년에는 동물의 설계된 특성들을 발견하고 있었다. 어떤 공룡(dinosaurs)들은 경늑골(cervical ribs)을 사용하고 있었다. 경늑골은 그들의 긴 목을 지지하는, 각 척추에 부착되어 있는 날씬한 연골성 지지대이다. 최첨단의 신체역학적 모델링은 이 경늑골의 정확한 구조가 공룡 머리의 흔들림을 막아주고, 진동을 완충하여, 용각류 공룡의 목을 안정화시키고 있음을 발견했다. 용각류 공룡 척추 사이의 적합된 관절의 방향성도 각 관절 사이에 힘의 소모 없이, 최대 운동범위를 유지시켜주는 동물의 경이로운 설계였음이 밝혀졌다.[6]

*참조 : 용각류 공룡 목의 경늑골에서 보여지는 놀라운 설계
http://www.creation.or.kr/library/itemview.asp?no=6272

2015년에도 다음 세대에 전해주어야 할 새로운 발견들이 넘쳐났다. ”여호와께서 행하시는 일들이 크시오니 이를 즐거워하는 자들이 다 기리는도다”[7]



References

1.Psalm 89:11, 12a.
2.Thomas, B. 2016. Rats, bats and pitcher plants. Creation. 38 (1): 18-19.
3.Thomas, B. Clever Construction in Rorqual Whales. Creation Science Update. Posted on icr.org May 14, 2015, accessed December 10, 2015.
4.Thomas, B.Discovery: Spine Signals Ears to Maintain Balance. Creation Science Update. Posted on icr.org September 24, 2015, accessed December 10, 2015.
5.Thomas, B.Amazing Sauropod Neck Design in 'Cervical Ribs'. Creation Science Update. Posted on icr.org November 5, 2015, accessed December 10, 2015.
6.Thomas, B.Amazing Design Structures in Long-Necked Dinosaurs. Creation Science Update. Posted on icr.org November 9, 2015, accessed December 10, 2015.
7.Psalm 111:2.



번역 - 미디어위원회

링크 - http://www.icr.org/article/9098 

출처 - ICR News, 2015. 1. 4.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6302

참고 : 6291|6290|6289|6199|6178|6165|6163|6162|5896|6161|6159|6137|6069|6034|6001|5997|5975|5962|5976|4041|4056|4197|4637|4728|4764|5088|5224|5287|5351|5352|5382|5426|5430|5438|5504|5551|5567|5596|5600|5656|5671|5694|5700|5746|5754|5759|5772|5773|5814|5839|5845|5856|5891|5894|5902|5920|5926|5932|5933|5934|5956|5959|5960|6245|6272|6302|6304|6308|6324|6336|6406|6475|6492|6494|6516|6522|6526|6530|6536|6557|6572|6584|6590|6595|6609|6210|6216|6322|6327|6373|6380|6593|6619

미디어위원회
2015-12-22

동물들이 혹한의 추위에도 견딜 수 있는 이유는? 

: 펭귄이 물에 젖어도 얼어붙지 않는 비밀이 밝혀지다. 

(How Animals Keep Warm in Freezing Wetness)

David F. Coppedge


     사람이 외투와 신발 없이 눈길을 걸어간다면, 얼마나 춥겠는가? 그러나 산토끼, 다람쥐, 새들은 완벽하게 편안해 보인다. 그 비밀은 무엇일까?

비밀은 털과 깃털에 공기를 가두고, 물을 털어낼 수 있는 재료를 사용하고 있기 때문이다. Science Daily(2015. 11. 23) 지의 기사는 털(hair)과 깃털(feathers) 내에 갇혀진 공기가 어떻게 이상적인 절연체(insulator)로 작동되고 있는지를 설명해주고 있었다. MIT의 과학자들은 그들 외피의 덮개 작용이 사람이 만든 제품보다 얼마나 효율적으로 작동되고 있는지, 그 이유를 살펴보고 있었다.

털의 특성(털의 길이와 간격 같은)이 표면의 젖음에 미치는 영향을 조사하기 위해서, 연구자들은 털 길이, 털 간격, 유체 점도, 뛰어듦 속도 등을 포함하여 여러 변수들에 대해 실험했다. 그리고 털 표면의 기하학이 중요한 역할을 하는 것을 발견했다. 특별히 털 배열의 치밀도가 높을수록 표면의 방수 효과가 컸다.

또한 연구팀은 란다우-레비치 코팅(Landau-Levich coating)으로 불려지는 고전적인 침지법(dip coating) 보다 털 구조가 훨씬 많은 양의 공기를 가두는 것을 발견했다. 그렇게 함으로, 침지법의 증강된 버전을 만들고 있었다. 그러나 고전적인 란다우-레비치 코팅과 같지 않게 수생 동물 털과 관련된 질서 정연한 균형은 점도 스트레스와 물의 정수압 사이에 있었다. ”이러한 발견은 코팅기술의 발전에 잠재적인 기술을 제공할 것으로 희망한다”고 나스토(Nasto)는 말했다. 

깃털도 역시 극도로 잘 작동되고 있었다. 한 극도의 사례가 펭귄(penguins)이다. Science Daily(2015. 11. 23) 지에 게재된, ”펭귄의 동결 방지(anti-icing) 기술”이라는 또 다른 기사는 물에 저항하고, 공기를 가두는, 펭귄깃털의 여러 요소들을 기술하고 있었다.

남극의 펭귄은 –40℃에 이르는 온도와 초속 40m의 강풍이 부는 매우 혹독한 환경에서 살아간다. 펭귄들은 그렇게 추운 곳에서 차가운 물속과 밖을 드나들고 있지만, 그들의 깃털은 물에 젖어 얼어붙지 않는다.

이제 연구자들은 펭귄의 깃털을 자세히 조사했다. 그리고 펭귄의 동결 방지 기술을 알게 되었다. 그것은 나노구조(nanostructures)와 특별한 오일의 조합으로, 남극펭귄의 깃털에 슈퍼소수성(superhydrophobic)의 울트라 방수기능을 만들어낸다. 깃털 위의 물방울들은 구슬 모양이 되서, 얼어붙기 전에 굴러 떨어진다.

그것은 정말 멋지다. 그리고 펭귄을 따뜻하게 해준다. 또한 그 깃털은 웨델 바다표범(Weddell seals)에서도 작동되고 있음에 틀림없다. 왜냐하면 그들은 마치 따뜻한 바하마에서 수영하고 있는 것처럼. 펭귄들이 살아가고 있는 혹독한 곳에서 같이 수영하며 살아가고 있기 때문이다.

말할 필요도 없이, UCLA의 과학자들은 이러한 기술을 배우고 싶어 한다. 심지어 비행기에서 얼음을 제거하는 기술에도 적용될 수 있을까?

펭귄의 결빙방지 해결책은 얼음에 관한 몇몇 문제를 해결하는데 도움을 줄 수 있다. 예를 들어, 비행기의 날개와 방향타 위에 쌓여진 얼음 등은 비행기의 항공 역학적 특성을 변경시킬 수 있으며, 심지어는 충돌의 원인이 될 수도 있다. 항공사들은 추운 겨울 동안에 비행기 위의 얼음을 화학적으로 제거하기 위하여 많은 시간과 돈을 쓰고 있다. 펭귄에서 영감을 얻은 초소수성 표면은 매우 값이 싸며, 지속적이며, 또한 환경 친화적이다.

”날 수 없는 새가 날아다니는 비행기의 안정성에 도움을 줄 수 있다는 것은 약간의 아이러니이다”라고 카베포어(Kavehpour)는 말했다.

이 동물들에게 이러한 기술은 어떻게 생겨났는가? 이들 새들과 동물들은 지구 환경의 모든 곳에서 견뎌낼 수 있다. 예를 들어, 일러스트라의 필름 ‘비행(Flight)’에서 보여준 것처럼, 극제비갈매기(arctic terns)는 많은 온도 차이가 나는 지구의 여러 곳을 비행한다. 더군다나 그들은 모든 위도에서 물속으로 뛰어들어 그들의 먹이를 잡는다. 코요테는 더운 사막에서부터 추운 옐로우스톤의 겨울 눈 속에서도 살아간다. 각 동물들이 이러한 광범위한 서식지에서 살아갈 수 있다는 것은 정말로 놀라운 일이다. 



이것에 대해 생각해보라. 그러한 놀라운 일이 일어나기 위해서는, 재료물질이 만들어지는 것뿐만 아니라, 많은 지적설계가 필요함이 분명하다. 털과 깃털이 적절히 작동되기 위해서는, 정확한 길이, 치밀도, 오일 등이 필요하다. 그들은 적절하게 층을 이루고 있어야만 한다. 그들은 가장 취약한 부분들은 덮고 있어야만 한다. 그리고 동물이 불편하지 않게 움직일 수 있도록 해주어야 한다. 그리고 그러한 기술이 다음 세대에도 생겨날 수 있도록 DNA 속에 암호로 들어가 있어야한다. 이러한 것들은 어떤 체계적 지적설계의 증거임이 분명하다. 방향도 없고, 목적도 없는, 무작위적인 돌연변이들에 의한 자연선택으로는 설명될 수 없다. 물론 살아있는 동식물들은 모든 면에서 뛰어난 지적설계를 보여주고 있다. 그것이 오늘날 생체모방공학(biomimetics)이 각광받고 있는 이유이다.

하나님은 사람에게 털과 깃털을 주시지 않았다. 그러나 사람에게는 그것을 이해할 수 있는 뇌를 주셨다. 최초의 사람들은 동물의 가죽을 빌려서 옷으로 입었다. 그리고 그것이 의복이 될 수 있는 우수한 재료라는 것을 이해했다. 그것이 사람들이 북극, 남극, 사막, 춥고, 열악한 모든 곳에서 살아갈 수 있는 이유이다. 대부분의 온화한 환경에서 사람의 피부는 방수 기능과 증발에 의한 냉각 기능을 가지고 있다. 그래서 우리는 감사해야할 놀라운 피부를 가지고 있는 것이다. 우리는 동물들로부터 많은 것을 배운다. 사람이 만든 인공재료보다, 지속적이며, 환경 친화적이고, 기능적으로 우수한, 수많은 재료들과 설계들이 생물계에 널려있는 것이다.


*관련기사 : 펭귄 깃털의 비밀. 추운 곳의 펭귄이 나노구조 더 많아 (2015. 12. 22. ScienceTimes)

https://www.sciencetimes.co.kr/news/%ED%8E%AD%EA%B7%84-%EA%B9%83%ED%84%B8%EC%9D%98-%EB%B9%84%EB%B0%80/

펭귄 깃털은 효과적인 결빙 방지 기술의 비밀.. (2022. 11. 3. 제주환경일보)

https://www.newsje.com/news/articleView.html?idxno=264079


번역 - 미디어위원회

링크 - http://crev.info/2015/11/how-animals-keep-warm/ 

출처 - CEH, 2015. 11. 25.



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광